| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un23 | GIF version | ||
| Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| un23 | ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 3338 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | |
| 2 | un12 3339 | . 2 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | |
| 3 | uncom 3325 | . 2 ⊢ (𝐵 ∪ (𝐴 ∪ 𝐶)) = ((𝐴 ∪ 𝐶) ∪ 𝐵) | |
| 4 | 1, 2, 3 | 3eqtri 2232 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 |
| This theorem is referenced by: setscom 12987 |
| Copyright terms: Public domain | W3C validator |