ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un23 GIF version

Theorem un23 3318
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
un23 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ 𝐵)

Proof of Theorem un23
StepHypRef Expression
1 unass 3316 . 2 ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))
2 un12 3317 . 2 (𝐴 ∪ (𝐵𝐶)) = (𝐵 ∪ (𝐴𝐶))
3 uncom 3303 . 2 (𝐵 ∪ (𝐴𝐶)) = ((𝐴𝐶) ∪ 𝐵)
41, 2, 33eqtri 2218 1 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cun 3151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157
This theorem is referenced by:  setscom  12658
  Copyright terms: Public domain W3C validator