ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undisj1 Unicode version

Theorem undisj1 3549
Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
undisj1  |-  ( ( ( A  i^i  C
)  =  (/)  /\  ( B  i^i  C )  =  (/) )  <->  ( ( A  u.  B )  i^i 
C )  =  (/) )

Proof of Theorem undisj1
StepHypRef Expression
1 un00 3538 . 2  |-  ( ( ( A  i^i  C
)  =  (/)  /\  ( B  i^i  C )  =  (/) )  <->  ( ( A  i^i  C )  u.  ( B  i^i  C
) )  =  (/) )
2 indir 3453 . . 3  |-  ( ( A  u.  B )  i^i  C )  =  ( ( A  i^i  C )  u.  ( B  i^i  C ) )
32eqeq1i 2237 . 2  |-  ( ( ( A  u.  B
)  i^i  C )  =  (/)  <->  ( ( A  i^i  C )  u.  ( B  i^i  C
) )  =  (/) )
41, 3bitr4i 187 1  |-  ( ( ( A  i^i  C
)  =  (/)  /\  ( B  i^i  C )  =  (/) )  <->  ( ( A  u.  B )  i^i 
C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    u. cun 3195    i^i cin 3196   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  funtp  5374
  Copyright terms: Public domain W3C validator