Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funtp | Unicode version |
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
funtp.1 | |
funtp.2 | |
funtp.3 | |
funtp.4 | |
funtp.5 | |
funtp.6 |
Ref | Expression |
---|---|
funtp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funtp.1 | . . . . . 6 | |
2 | funtp.2 | . . . . . 6 | |
3 | funtp.4 | . . . . . 6 | |
4 | funtp.5 | . . . . . 6 | |
5 | 1, 2, 3, 4 | funpr 5240 | . . . . 5 |
6 | funtp.3 | . . . . . 6 | |
7 | funtp.6 | . . . . . 6 | |
8 | 6, 7 | funsn 5236 | . . . . 5 |
9 | 5, 8 | jctir 311 | . . . 4 |
10 | 3, 4 | dmprop 5078 | . . . . . . 7 |
11 | df-pr 3583 | . . . . . . 7 | |
12 | 10, 11 | eqtri 2186 | . . . . . 6 |
13 | 7 | dmsnop 5077 | . . . . . 6 |
14 | 12, 13 | ineq12i 3321 | . . . . 5 |
15 | disjsn2 3639 | . . . . . . 7 | |
16 | disjsn2 3639 | . . . . . . 7 | |
17 | 15, 16 | anim12i 336 | . . . . . 6 |
18 | undisj1 3466 | . . . . . 6 | |
19 | 17, 18 | sylib 121 | . . . . 5 |
20 | 14, 19 | syl5eq 2211 | . . . 4 |
21 | funun 5232 | . . . 4 | |
22 | 9, 20, 21 | syl2an 287 | . . 3 |
23 | 22 | 3impb 1189 | . 2 |
24 | df-tp 3584 | . . 3 | |
25 | 24 | funeqi 5209 | . 2 |
26 | 23, 25 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wne 2336 cvv 2726 cun 3114 cin 3115 c0 3409 csn 3576 cpr 3577 ctp 3578 cop 3579 cdm 4604 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-tp 3584 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 |
This theorem is referenced by: fntp 5245 |
Copyright terms: Public domain | W3C validator |