| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funtp | Unicode version | ||
| Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| funtp.1 |
|
| funtp.2 |
|
| funtp.3 |
|
| funtp.4 |
|
| funtp.5 |
|
| funtp.6 |
|
| Ref | Expression |
|---|---|
| funtp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funtp.1 |
. . . . . 6
| |
| 2 | funtp.2 |
. . . . . 6
| |
| 3 | funtp.4 |
. . . . . 6
| |
| 4 | funtp.5 |
. . . . . 6
| |
| 5 | 1, 2, 3, 4 | funpr 5326 |
. . . . 5
|
| 6 | funtp.3 |
. . . . . 6
| |
| 7 | funtp.6 |
. . . . . 6
| |
| 8 | 6, 7 | funsn 5322 |
. . . . 5
|
| 9 | 5, 8 | jctir 313 |
. . . 4
|
| 10 | 3, 4 | dmprop 5157 |
. . . . . . 7
|
| 11 | df-pr 3640 |
. . . . . . 7
| |
| 12 | 10, 11 | eqtri 2226 |
. . . . . 6
|
| 13 | 7 | dmsnop 5156 |
. . . . . 6
|
| 14 | 12, 13 | ineq12i 3372 |
. . . . 5
|
| 15 | disjsn2 3696 |
. . . . . . 7
| |
| 16 | disjsn2 3696 |
. . . . . . 7
| |
| 17 | 15, 16 | anim12i 338 |
. . . . . 6
|
| 18 | undisj1 3518 |
. . . . . 6
| |
| 19 | 17, 18 | sylib 122 |
. . . . 5
|
| 20 | 14, 19 | eqtrid 2250 |
. . . 4
|
| 21 | funun 5315 |
. . . 4
| |
| 22 | 9, 20, 21 | syl2an 289 |
. . 3
|
| 23 | 22 | 3impb 1202 |
. 2
|
| 24 | df-tp 3641 |
. . 3
| |
| 25 | 24 | funeqi 5292 |
. 2
|
| 26 | 23, 25 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-fun 5273 |
| This theorem is referenced by: fntp 5331 |
| Copyright terms: Public domain | W3C validator |