Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funtp | Unicode version |
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
funtp.1 | |
funtp.2 | |
funtp.3 | |
funtp.4 | |
funtp.5 | |
funtp.6 |
Ref | Expression |
---|---|
funtp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funtp.1 | . . . . . 6 | |
2 | funtp.2 | . . . . . 6 | |
3 | funtp.4 | . . . . . 6 | |
4 | funtp.5 | . . . . . 6 | |
5 | 1, 2, 3, 4 | funpr 5250 | . . . . 5 |
6 | funtp.3 | . . . . . 6 | |
7 | funtp.6 | . . . . . 6 | |
8 | 6, 7 | funsn 5246 | . . . . 5 |
9 | 5, 8 | jctir 311 | . . . 4 |
10 | 3, 4 | dmprop 5085 | . . . . . . 7 |
11 | df-pr 3590 | . . . . . . 7 | |
12 | 10, 11 | eqtri 2191 | . . . . . 6 |
13 | 7 | dmsnop 5084 | . . . . . 6 |
14 | 12, 13 | ineq12i 3326 | . . . . 5 |
15 | disjsn2 3646 | . . . . . . 7 | |
16 | disjsn2 3646 | . . . . . . 7 | |
17 | 15, 16 | anim12i 336 | . . . . . 6 |
18 | undisj1 3472 | . . . . . 6 | |
19 | 17, 18 | sylib 121 | . . . . 5 |
20 | 14, 19 | eqtrid 2215 | . . . 4 |
21 | funun 5242 | . . . 4 | |
22 | 9, 20, 21 | syl2an 287 | . . 3 |
23 | 22 | 3impb 1194 | . 2 |
24 | df-tp 3591 | . . 3 | |
25 | 24 | funeqi 5219 | . 2 |
26 | 23, 25 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wne 2340 cvv 2730 cun 3119 cin 3120 c0 3414 csn 3583 cpr 3584 ctp 3585 cop 3586 cdm 4611 wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-tp 3591 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 |
This theorem is referenced by: fntp 5255 |
Copyright terms: Public domain | W3C validator |