ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtp Unicode version

Theorem funtp 5112
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
funtp.1  |-  A  e. 
_V
funtp.2  |-  B  e. 
_V
funtp.3  |-  C  e. 
_V
funtp.4  |-  D  e. 
_V
funtp.5  |-  E  e. 
_V
funtp.6  |-  F  e. 
_V
Assertion
Ref Expression
funtp  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )

Proof of Theorem funtp
StepHypRef Expression
1 funtp.1 . . . . . 6  |-  A  e. 
_V
2 funtp.2 . . . . . 6  |-  B  e. 
_V
3 funtp.4 . . . . . 6  |-  D  e. 
_V
4 funtp.5 . . . . . 6  |-  E  e. 
_V
51, 2, 3, 4funpr 5111 . . . . 5  |-  ( A  =/=  B  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. } )
6 funtp.3 . . . . . 6  |-  C  e. 
_V
7 funtp.6 . . . . . 6  |-  F  e. 
_V
86, 7funsn 5107 . . . . 5  |-  Fun  { <. C ,  F >. }
95, 8jctir 309 . . . 4  |-  ( A  =/=  B  ->  ( Fun  { <. A ,  D >. ,  <. B ,  E >. }  /\  Fun  { <. C ,  F >. } ) )
103, 4dmprop 4949 . . . . . . 7  |-  dom  { <. A ,  D >. , 
<. B ,  E >. }  =  { A ,  B }
11 df-pr 3481 . . . . . . 7  |-  { A ,  B }  =  ( { A }  u.  { B } )
1210, 11eqtri 2120 . . . . . 6  |-  dom  { <. A ,  D >. , 
<. B ,  E >. }  =  ( { A }  u.  { B } )
137dmsnop 4948 . . . . . 6  |-  dom  { <. C ,  F >. }  =  { C }
1412, 13ineq12i 3222 . . . . 5  |-  ( dom 
{ <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  { <. C ,  F >. } )  =  ( ( { A }  u.  { B } )  i^i 
{ C } )
15 disjsn2 3533 . . . . . . 7  |-  ( A  =/=  C  ->  ( { A }  i^i  { C } )  =  (/) )
16 disjsn2 3533 . . . . . . 7  |-  ( B  =/=  C  ->  ( { B }  i^i  { C } )  =  (/) )
1715, 16anim12i 334 . . . . . 6  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  i^i  { C }
)  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) )
18 undisj1 3367 . . . . . 6  |-  ( ( ( { A }  i^i  { C } )  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) 
<->  ( ( { A }  u.  { B } )  i^i  { C } )  =  (/) )
1917, 18sylib 121 . . . . 5  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  u.  { B } )  i^i  { C } )  =  (/) )
2014, 19syl5eq 2144 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( dom  { <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  {
<. C ,  F >. } )  =  (/) )
21 funun 5103 . . . 4  |-  ( ( ( Fun  { <. A ,  D >. ,  <. B ,  E >. }  /\  Fun  { <. C ,  F >. } )  /\  ( dom  { <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  { <. C ,  F >. } )  =  (/) )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
229, 20, 21syl2an 285 . . 3  |-  ( ( A  =/=  B  /\  ( A  =/=  C  /\  B  =/=  C
) )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
23223impb 1145 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
24 df-tp 3482 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } )
2524funeqi 5080 . 2  |-  ( Fun 
{ <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  <->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) )
2623, 25sylibr 133 1  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 930    = wceq 1299    e. wcel 1448    =/= wne 2267   _Vcvv 2641    u. cun 3019    i^i cin 3020   (/)c0 3310   {csn 3474   {cpr 3475   {ctp 3476   <.cop 3477   dom cdm 4477   Fun wfun 5053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-tp 3482  df-op 3483  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-fun 5061
This theorem is referenced by:  fntp  5116
  Copyright terms: Public domain W3C validator