![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > undisj1 | GIF version |
Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.) |
Ref | Expression |
---|---|
undisj1 | ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un00 3348 | . 2 ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ∅) | |
2 | indir 3264 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) | |
3 | 2 | eqeq1i 2102 | . 2 ⊢ (((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅ ↔ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ∅) |
4 | 1, 3 | bitr4i 186 | 1 ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1296 ∪ cun 3011 ∩ cin 3012 ∅c0 3302 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 |
This theorem is referenced by: funtp 5101 |
Copyright terms: Public domain | W3C validator |