ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undisj1 GIF version

Theorem undisj1 3472
Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
undisj1 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐵) ∩ 𝐶) = ∅)

Proof of Theorem undisj1
StepHypRef Expression
1 un00 3461 . 2 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐶) ∪ (𝐵𝐶)) = ∅)
2 indir 3376 . . 3 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
32eqeq1i 2178 . 2 (((𝐴𝐵) ∩ 𝐶) = ∅ ↔ ((𝐴𝐶) ∪ (𝐵𝐶)) = ∅)
41, 3bitr4i 186 1 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐵) ∩ 𝐶) = ∅)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  cun 3119  cin 3120  c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415
This theorem is referenced by:  funtp  5251
  Copyright terms: Public domain W3C validator