Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > undisj1 | GIF version |
Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.) |
Ref | Expression |
---|---|
undisj1 | ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un00 3461 | . 2 ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ∅) | |
2 | indir 3376 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) | |
3 | 2 | eqeq1i 2178 | . 2 ⊢ (((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅ ↔ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ∅) |
4 | 1, 3 | bitr4i 186 | 1 ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∪ cun 3119 ∩ cin 3120 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 |
This theorem is referenced by: funtp 5251 |
Copyright terms: Public domain | W3C validator |