ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdisj Unicode version

Theorem ssdisj 3491
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
ssdisj  |-  ( ( A  C_  B  /\  ( B  i^i  C )  =  (/) )  ->  ( A  i^i  C )  =  (/) )

Proof of Theorem ssdisj
StepHypRef Expression
1 ss0b 3474 . . . 4  |-  ( ( B  i^i  C ) 
C_  (/)  <->  ( B  i^i  C )  =  (/) )
2 ssrin 3372 . . . . 5  |-  ( A 
C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
3 sstr2 3174 . . . . 5  |-  ( ( A  i^i  C ) 
C_  ( B  i^i  C )  ->  ( ( B  i^i  C )  C_  (/) 
->  ( A  i^i  C
)  C_  (/) ) )
42, 3syl 14 . . . 4  |-  ( A 
C_  B  ->  (
( B  i^i  C
)  C_  (/)  ->  ( A  i^i  C )  C_  (/) ) )
51, 4biimtrrid 153 . . 3  |-  ( A 
C_  B  ->  (
( B  i^i  C
)  =  (/)  ->  ( A  i^i  C )  C_  (/) ) )
65imp 124 . 2  |-  ( ( A  C_  B  /\  ( B  i^i  C )  =  (/) )  ->  ( A  i^i  C )  C_  (/) )
7 ss0 3475 . 2  |-  ( ( A  i^i  C ) 
C_  (/)  ->  ( A  i^i  C )  =  (/) )
86, 7syl 14 1  |-  ( ( A  C_  B  /\  ( B  i^i  C )  =  (/) )  ->  ( A  i^i  C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    i^i cin 3140    C_ wss 3141   (/)c0 3434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-dif 3143  df-in 3147  df-ss 3154  df-nul 3435
This theorem is referenced by:  djudisj  5068  fimacnvdisj  5412  unfiin  6939  hashunlem  10798
  Copyright terms: Public domain W3C validator