ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdisj Unicode version

Theorem ssdisj 3471
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
ssdisj  |-  ( ( A  C_  B  /\  ( B  i^i  C )  =  (/) )  ->  ( A  i^i  C )  =  (/) )

Proof of Theorem ssdisj
StepHypRef Expression
1 ss0b 3454 . . . 4  |-  ( ( B  i^i  C ) 
C_  (/)  <->  ( B  i^i  C )  =  (/) )
2 ssrin 3352 . . . . 5  |-  ( A 
C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
3 sstr2 3154 . . . . 5  |-  ( ( A  i^i  C ) 
C_  ( B  i^i  C )  ->  ( ( B  i^i  C )  C_  (/) 
->  ( A  i^i  C
)  C_  (/) ) )
42, 3syl 14 . . . 4  |-  ( A 
C_  B  ->  (
( B  i^i  C
)  C_  (/)  ->  ( A  i^i  C )  C_  (/) ) )
51, 4syl5bir 152 . . 3  |-  ( A 
C_  B  ->  (
( B  i^i  C
)  =  (/)  ->  ( A  i^i  C )  C_  (/) ) )
65imp 123 . 2  |-  ( ( A  C_  B  /\  ( B  i^i  C )  =  (/) )  ->  ( A  i^i  C )  C_  (/) )
7 ss0 3455 . 2  |-  ( ( A  i^i  C ) 
C_  (/)  ->  ( A  i^i  C )  =  (/) )
86, 7syl 14 1  |-  ( ( A  C_  B  /\  ( B  i^i  C )  =  (/) )  ->  ( A  i^i  C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    i^i cin 3120    C_ wss 3121   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415
This theorem is referenced by:  djudisj  5038  fimacnvdisj  5382  unfiin  6903  hashunlem  10739
  Copyright terms: Public domain W3C validator