ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indi Unicode version

Theorem indi 3406
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
indi  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )

Proof of Theorem indi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 andi 819 . . . 4  |-  ( ( x  e.  A  /\  ( x  e.  B  \/  x  e.  C
) )  <->  ( (
x  e.  A  /\  x  e.  B )  \/  ( x  e.  A  /\  x  e.  C
) ) )
2 elin 3342 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
3 elin 3342 . . . . 5  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
42, 3orbi12i 765 . . . 4  |-  ( ( x  e.  ( A  i^i  B )  \/  x  e.  ( A  i^i  C ) )  <-> 
( ( x  e.  A  /\  x  e.  B )  \/  (
x  e.  A  /\  x  e.  C )
) )
51, 4bitr4i 187 . . 3  |-  ( ( x  e.  A  /\  ( x  e.  B  \/  x  e.  C
) )  <->  ( x  e.  ( A  i^i  B
)  \/  x  e.  ( A  i^i  C
) ) )
6 elun 3300 . . . 4  |-  ( x  e.  ( B  u.  C )  <->  ( x  e.  B  \/  x  e.  C ) )
76anbi2i 457 . . 3  |-  ( ( x  e.  A  /\  x  e.  ( B  u.  C ) )  <->  ( x  e.  A  /\  (
x  e.  B  \/  x  e.  C )
) )
8 elun 3300 . . 3  |-  ( x  e.  ( ( A  i^i  B )  u.  ( A  i^i  C
) )  <->  ( x  e.  ( A  i^i  B
)  \/  x  e.  ( A  i^i  C
) ) )
95, 7, 83bitr4i 212 . 2  |-  ( ( x  e.  A  /\  x  e.  ( B  u.  C ) )  <->  x  e.  ( ( A  i^i  B )  u.  ( A  i^i  C ) ) )
109ineqri 3352 1  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164    u. cun 3151    i^i cin 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159
This theorem is referenced by:  indir  3408  undisj2  3505  disjssun  3510  difdifdirss  3531  disjpr2  3682  diftpsn3  3759  resundi  4955
  Copyright terms: Public domain W3C validator