ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indi Unicode version

Theorem indi 3451
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
indi  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )

Proof of Theorem indi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 andi 823 . . . 4  |-  ( ( x  e.  A  /\  ( x  e.  B  \/  x  e.  C
) )  <->  ( (
x  e.  A  /\  x  e.  B )  \/  ( x  e.  A  /\  x  e.  C
) ) )
2 elin 3387 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
3 elin 3387 . . . . 5  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
42, 3orbi12i 769 . . . 4  |-  ( ( x  e.  ( A  i^i  B )  \/  x  e.  ( A  i^i  C ) )  <-> 
( ( x  e.  A  /\  x  e.  B )  \/  (
x  e.  A  /\  x  e.  C )
) )
51, 4bitr4i 187 . . 3  |-  ( ( x  e.  A  /\  ( x  e.  B  \/  x  e.  C
) )  <->  ( x  e.  ( A  i^i  B
)  \/  x  e.  ( A  i^i  C
) ) )
6 elun 3345 . . . 4  |-  ( x  e.  ( B  u.  C )  <->  ( x  e.  B  \/  x  e.  C ) )
76anbi2i 457 . . 3  |-  ( ( x  e.  A  /\  x  e.  ( B  u.  C ) )  <->  ( x  e.  A  /\  (
x  e.  B  \/  x  e.  C )
) )
8 elun 3345 . . 3  |-  ( x  e.  ( ( A  i^i  B )  u.  ( A  i^i  C
) )  <->  ( x  e.  ( A  i^i  B
)  \/  x  e.  ( A  i^i  C
) ) )
95, 7, 83bitr4i 212 . 2  |-  ( ( x  e.  A  /\  x  e.  ( B  u.  C ) )  <->  x  e.  ( ( A  i^i  B )  u.  ( A  i^i  C ) ) )
109ineqri 3397 1  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200    u. cun 3195    i^i cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203
This theorem is referenced by:  indir  3453  undisj2  3550  disjssun  3555  difdifdirss  3576  disjpr2  3730  diftpsn3  3809  resundi  5018  bitsinv1  12473
  Copyright terms: Public domain W3C validator