| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undisj2 | GIF version | ||
| Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.) |
| Ref | Expression |
|---|---|
| undisj2 | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un00 3508 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) = ∅) | |
| 2 | indi 3421 | . . 3 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | |
| 3 | 2 | eqeq1i 2214 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅ ↔ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) = ∅) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∪ cun 3165 ∩ cin 3166 ∅c0 3461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |