ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undisj2 GIF version

Theorem undisj2 3530
Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
undisj2 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)

Proof of Theorem undisj2
StepHypRef Expression
1 un00 3518 . 2 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ ((𝐴𝐵) ∪ (𝐴𝐶)) = ∅)
2 indi 3431 . . 3 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
32eqeq1i 2217 . 2 ((𝐴 ∩ (𝐵𝐶)) = ∅ ↔ ((𝐴𝐵) ∪ (𝐴𝐶)) = ∅)
41, 3bitr4i 187 1 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1375  cun 3175  cin 3176  c0 3471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator