ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniss2 Unicode version

Theorem uniss2 3867
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
uniss2  |-  ( A. x  e.  A  E. y  e.  B  x  C_  y  ->  U. A  C_  U. B )
Distinct variable groups:    x, A    x, y, B
Allowed substitution hint:    A( y)

Proof of Theorem uniss2
StepHypRef Expression
1 ssuni 3858 . . . . 5  |-  ( ( x  C_  y  /\  y  e.  B )  ->  x  C_  U. B )
21expcom 116 . . . 4  |-  ( y  e.  B  ->  (
x  C_  y  ->  x 
C_  U. B ) )
32rexlimiv 2605 . . 3  |-  ( E. y  e.  B  x 
C_  y  ->  x  C_ 
U. B )
43ralimi 2557 . 2  |-  ( A. x  e.  A  E. y  e.  B  x  C_  y  ->  A. x  e.  A  x  C_  U. B
)
5 unissb 3866 . 2  |-  ( U. A  C_  U. B  <->  A. x  e.  A  x  C_  U. B
)
64, 5sylibr 134 1  |-  ( A. x  e.  A  E. y  e.  B  x  C_  y  ->  U. A  C_  U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3154   U.cuni 3836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3160  df-ss 3167  df-uni 3837
This theorem is referenced by:  unidif  3868
  Copyright terms: Public domain W3C validator