ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniss2 Unicode version

Theorem uniss2 3684
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
uniss2  |-  ( A. x  e.  A  E. y  e.  B  x  C_  y  ->  U. A  C_  U. B )
Distinct variable groups:    x, A    x, y, B
Allowed substitution hint:    A( y)

Proof of Theorem uniss2
StepHypRef Expression
1 ssuni 3675 . . . . 5  |-  ( ( x  C_  y  /\  y  e.  B )  ->  x  C_  U. B )
21expcom 114 . . . 4  |-  ( y  e.  B  ->  (
x  C_  y  ->  x 
C_  U. B ) )
32rexlimiv 2483 . . 3  |-  ( E. y  e.  B  x 
C_  y  ->  x  C_ 
U. B )
43ralimi 2438 . 2  |-  ( A. x  e.  A  E. y  e.  B  x  C_  y  ->  A. x  e.  A  x  C_  U. B
)
5 unissb 3683 . 2  |-  ( U. A  C_  U. B  <->  A. x  e.  A  x  C_  U. B
)
64, 5sylibr 132 1  |-  ( A. x  e.  A  E. y  e.  B  x  C_  y  ->  U. A  C_  U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1438   A.wral 2359   E.wrex 2360    C_ wss 2999   U.cuni 3653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-in 3005  df-ss 3012  df-uni 3654
This theorem is referenced by:  unidif  3685
  Copyright terms: Public domain W3C validator