ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssuni Unicode version

Theorem ssuni 3670
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ssuni  |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  C_  U. C )

Proof of Theorem ssuni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2151 . . . . . . 7  |-  ( x  =  B  ->  (
y  e.  x  <->  y  e.  B ) )
21imbi1d 229 . . . . . 6  |-  ( x  =  B  ->  (
( y  e.  x  ->  y  e.  U. C
)  <->  ( y  e.  B  ->  y  e.  U. C ) ) )
3 elunii 3653 . . . . . . 7  |-  ( ( y  e.  x  /\  x  e.  C )  ->  y  e.  U. C
)
43expcom 114 . . . . . 6  |-  ( x  e.  C  ->  (
y  e.  x  -> 
y  e.  U. C
) )
52, 4vtoclga 2685 . . . . 5  |-  ( B  e.  C  ->  (
y  e.  B  -> 
y  e.  U. C
) )
65imim2d 53 . . . 4  |-  ( B  e.  C  ->  (
( y  e.  A  ->  y  e.  B )  ->  ( y  e.  A  ->  y  e.  U. C ) ) )
76alimdv 1807 . . 3  |-  ( B  e.  C  ->  ( A. y ( y  e.  A  ->  y  e.  B )  ->  A. y
( y  e.  A  ->  y  e.  U. C
) ) )
8 dfss2 3012 . . 3  |-  ( A 
C_  B  <->  A. y
( y  e.  A  ->  y  e.  B ) )
9 dfss2 3012 . . 3  |-  ( A 
C_  U. C  <->  A. y
( y  e.  A  ->  y  e.  U. C
) )
107, 8, 93imtr4g 203 . 2  |-  ( B  e.  C  ->  ( A  C_  B  ->  A  C_ 
U. C ) )
1110impcom 123 1  |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  C_  U. C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1287    = wceq 1289    e. wcel 1438    C_ wss 2997   U.cuni 3648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-in 3003  df-ss 3010  df-uni 3649
This theorem is referenced by:  elssuni  3676  uniss2  3679  ssorduni  4294
  Copyright terms: Public domain W3C validator