ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssuni Unicode version

Theorem ssuni 3871
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ssuni  |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  C_  U. C )

Proof of Theorem ssuni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2268 . . . . . . 7  |-  ( x  =  B  ->  (
y  e.  x  <->  y  e.  B ) )
21imbi1d 231 . . . . . 6  |-  ( x  =  B  ->  (
( y  e.  x  ->  y  e.  U. C
)  <->  ( y  e.  B  ->  y  e.  U. C ) ) )
3 elunii 3854 . . . . . . 7  |-  ( ( y  e.  x  /\  x  e.  C )  ->  y  e.  U. C
)
43expcom 116 . . . . . 6  |-  ( x  e.  C  ->  (
y  e.  x  -> 
y  e.  U. C
) )
52, 4vtoclga 2838 . . . . 5  |-  ( B  e.  C  ->  (
y  e.  B  -> 
y  e.  U. C
) )
65imim2d 54 . . . 4  |-  ( B  e.  C  ->  (
( y  e.  A  ->  y  e.  B )  ->  ( y  e.  A  ->  y  e.  U. C ) ) )
76alimdv 1901 . . 3  |-  ( B  e.  C  ->  ( A. y ( y  e.  A  ->  y  e.  B )  ->  A. y
( y  e.  A  ->  y  e.  U. C
) ) )
8 ssalel 3180 . . 3  |-  ( A 
C_  B  <->  A. y
( y  e.  A  ->  y  e.  B ) )
9 ssalel 3180 . . 3  |-  ( A 
C_  U. C  <->  A. y
( y  e.  A  ->  y  e.  U. C
) )
107, 8, 93imtr4g 205 . 2  |-  ( B  e.  C  ->  ( A  C_  B  ->  A  C_ 
U. C ) )
1110impcom 125 1  |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  C_  U. C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1370    = wceq 1372    e. wcel 2175    C_ wss 3165   U.cuni 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850
This theorem is referenced by:  elssuni  3877  uniss2  3880  ssorduni  4534
  Copyright terms: Public domain W3C validator