![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniss2 | GIF version |
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. (Contributed by NM, 22-Mar-2004.) |
Ref | Expression |
---|---|
uniss2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssuni 3857 | . . . . 5 ⊢ ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ⊆ ∪ 𝐵) | |
2 | 1 | expcom 116 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑥 ⊆ 𝑦 → 𝑥 ⊆ ∪ 𝐵)) |
3 | 2 | rexlimiv 2605 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → 𝑥 ⊆ ∪ 𝐵) |
4 | 3 | ralimi 2557 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ 𝐵) |
5 | unissb 3865 | . 2 ⊢ (∪ 𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ 𝐵) | |
6 | 4, 5 | sylibr 134 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3153 ∪ cuni 3835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3159 df-ss 3166 df-uni 3836 |
This theorem is referenced by: unidif 3867 |
Copyright terms: Public domain | W3C validator |