ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniss2 GIF version

Theorem uniss2 3918
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
uniss2 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem uniss2
StepHypRef Expression
1 ssuni 3909 . . . . 5 ((𝑥𝑦𝑦𝐵) → 𝑥 𝐵)
21expcom 116 . . . 4 (𝑦𝐵 → (𝑥𝑦𝑥 𝐵))
32rexlimiv 2642 . . 3 (∃𝑦𝐵 𝑥𝑦𝑥 𝐵)
43ralimi 2593 . 2 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴 𝑥 𝐵)
5 unissb 3917 . 2 ( 𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
64, 5sylibr 134 1 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wral 2508  wrex 2509  wss 3197   cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888
This theorem is referenced by:  unidif  3919
  Copyright terms: Public domain W3C validator