ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniss2 GIF version

Theorem uniss2 3827
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
uniss2 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem uniss2
StepHypRef Expression
1 ssuni 3818 . . . . 5 ((𝑥𝑦𝑦𝐵) → 𝑥 𝐵)
21expcom 115 . . . 4 (𝑦𝐵 → (𝑥𝑦𝑥 𝐵))
32rexlimiv 2581 . . 3 (∃𝑦𝐵 𝑥𝑦𝑥 𝐵)
43ralimi 2533 . 2 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴 𝑥 𝐵)
5 unissb 3826 . 2 ( 𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
64, 5sylibr 133 1 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wral 2448  wrex 2449  wss 3121   cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797
This theorem is referenced by:  unidif  3828
  Copyright terms: Public domain W3C validator