Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniss2 | GIF version |
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. (Contributed by NM, 22-Mar-2004.) |
Ref | Expression |
---|---|
uniss2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssuni 3818 | . . . . 5 ⊢ ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ⊆ ∪ 𝐵) | |
2 | 1 | expcom 115 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑥 ⊆ 𝑦 → 𝑥 ⊆ ∪ 𝐵)) |
3 | 2 | rexlimiv 2581 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → 𝑥 ⊆ ∪ 𝐵) |
4 | 3 | ralimi 2533 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ 𝐵) |
5 | unissb 3826 | . 2 ⊢ (∪ 𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ 𝐵) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 |
This theorem is referenced by: unidif 3828 |
Copyright terms: Public domain | W3C validator |