ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidif Unicode version

Theorem unidif 3804
Description: If the difference  A  \  B contains the largest members of  A, then the union of the difference is the union of  A. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) x  C_  y  ->  U. ( A  \  B )  =  U. A )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem unidif
StepHypRef Expression
1 uniss2 3803 . . 3  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) x  C_  y  ->  U. A  C_  U. ( A  \  B ) )
2 difss 3233 . . . 4  |-  ( A 
\  B )  C_  A
32unissi 3795 . . 3  |-  U. ( A  \  B )  C_  U. A
41, 3jctil 310 . 2  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) x  C_  y  ->  ( U. ( A  \  B )  C_  U. A  /\  U. A  C_ 
U. ( A  \  B ) ) )
5 eqss 3143 . 2  |-  ( U. ( A  \  B )  =  U. A  <->  ( U. ( A  \  B ) 
C_  U. A  /\  U. A  C_  U. ( A 
\  B ) ) )
64, 5sylibr 133 1  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) x  C_  y  ->  U. ( A  \  B )  =  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335   A.wral 2435   E.wrex 2436    \ cdif 3099    C_ wss 3102   U.cuni 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-in 3108  df-ss 3115  df-uni 3773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator