![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vnex | GIF version |
Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.) |
Ref | Expression |
---|---|
vnex | ⊢ ¬ ∃𝑥 𝑥 = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset 4018 | . 2 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
2 | vex 2660 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | tbt 246 | . . . . 5 ⊢ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
4 | 3 | albii 1429 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
5 | dfcleq 2109 | . . . 4 ⊢ (𝑥 = V ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) | |
6 | 4, 5 | bitr4i 186 | . . 3 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = V) |
7 | 6 | exbii 1567 | . 2 ⊢ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑥 𝑥 = V) |
8 | 1, 7 | mtbi 642 | 1 ⊢ ¬ ∃𝑥 𝑥 = V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∀wal 1312 = wceq 1314 ∃wex 1451 ∈ wcel 1463 Vcvv 2657 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-ext 2097 ax-sep 4006 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-v 2659 |
This theorem is referenced by: vprc 4020 |
Copyright terms: Public domain | W3C validator |