| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vnex | GIF version | ||
| Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.) |
| Ref | Expression |
|---|---|
| vnex | ⊢ ¬ ∃𝑥 𝑥 = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nalset 4173 | . 2 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
| 2 | vex 2774 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 2 | tbt 247 | . . . . 5 ⊢ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
| 4 | 3 | albii 1492 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
| 5 | dfcleq 2198 | . . . 4 ⊢ (𝑥 = V ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) | |
| 6 | 4, 5 | bitr4i 187 | . . 3 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = V) |
| 7 | 6 | exbii 1627 | . 2 ⊢ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑥 𝑥 = V) |
| 8 | 1, 7 | mtbi 671 | 1 ⊢ ¬ ∃𝑥 𝑥 = V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1370 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: vprc 4175 |
| Copyright terms: Public domain | W3C validator |