ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vnex GIF version

Theorem vnex 4174
Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
vnex ¬ ∃𝑥 𝑥 = V

Proof of Theorem vnex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nalset 4173 . 2 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 2774 . . . . . 6 𝑦 ∈ V
32tbt 247 . . . . 5 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1492 . . . 4 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2198 . . . 4 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 187 . . 3 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1627 . 2 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 671 1 ¬ ∃𝑥 𝑥 = V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1370   = wceq 1372  wex 1514  wcel 2175  Vcvv 2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-v 2773
This theorem is referenced by:  vprc  4175
  Copyright terms: Public domain W3C validator