ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vnex GIF version

Theorem vnex 4164
Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
vnex ¬ ∃𝑥 𝑥 = V

Proof of Theorem vnex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nalset 4163 . 2 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 2766 . . . . . 6 𝑦 ∈ V
32tbt 247 . . . . 5 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1484 . . . 4 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2190 . . . 4 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 187 . . 3 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1619 . 2 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 671 1 ¬ ∃𝑥 𝑥 = V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1362   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  vprc  4165
  Copyright terms: Public domain W3C validator