ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl3ga Unicode version

Theorem vtocl3ga 2796
Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
vtocl3ga.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtocl3ga.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
vtocl3ga.3  |-  ( z  =  C  ->  ( ch 
<->  th ) )
vtocl3ga.4  |-  ( ( x  e.  D  /\  y  e.  R  /\  z  e.  S )  ->  ph )
Assertion
Ref Expression
vtocl3ga  |-  ( ( A  e.  D  /\  B  e.  R  /\  C  e.  S )  ->  th )
Distinct variable groups:    x, y, z, A    y, B, z   
z, C    x, D, y, z    x, R, y, z    x, S, y, z    ps, x    ch, y    th, z
Allowed substitution hints:    ph( x, y, z)    ps( y, z)    ch( x, z)    th( x, y)    B( x)    C( x, y)

Proof of Theorem vtocl3ga
StepHypRef Expression
1 nfcv 2308 . 2  |-  F/_ x A
2 nfcv 2308 . 2  |-  F/_ y A
3 nfcv 2308 . 2  |-  F/_ z A
4 nfcv 2308 . 2  |-  F/_ y B
5 nfcv 2308 . 2  |-  F/_ z B
6 nfcv 2308 . 2  |-  F/_ z C
7 nfv 1516 . 2  |-  F/ x ps
8 nfv 1516 . 2  |-  F/ y ch
9 nfv 1516 . 2  |-  F/ z th
10 vtocl3ga.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
11 vtocl3ga.2 . 2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
12 vtocl3ga.3 . 2  |-  ( z  =  C  ->  ( ch 
<->  th ) )
13 vtocl3ga.4 . 2  |-  ( ( x  e.  D  /\  y  e.  R  /\  z  e.  S )  ->  ph )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13vtocl3gaf 2795 1  |-  ( ( A  e.  D  /\  B  e.  R  /\  C  e.  S )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  preq12bg  3753  pocl  4281  sowlin  4298
  Copyright terms: Public domain W3C validator