| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > vtocl3ga | GIF version | ||
| Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| vtocl3ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| vtocl3ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| vtocl3ga.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | 
| vtocl3ga.4 | ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) | 
| Ref | Expression | 
|---|---|
| vtocl3ga | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfcv 2339 | . 2 ⊢ Ⅎ𝑧𝐴 | |
| 4 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 5 | nfcv 2339 | . 2 ⊢ Ⅎ𝑧𝐵 | |
| 6 | nfcv 2339 | . 2 ⊢ Ⅎ𝑧𝐶 | |
| 7 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 8 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜒 | |
| 9 | nfv 1542 | . 2 ⊢ Ⅎ𝑧𝜃 | |
| 10 | vtocl3ga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 11 | vtocl3ga.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 12 | vtocl3ga.3 | . 2 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
| 13 | vtocl3ga.4 | . 2 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | vtocl3gaf 2833 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 | 
| This theorem is referenced by: preq12bg 3803 pocl 4338 sowlin 4355 | 
| Copyright terms: Public domain | W3C validator |