Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocl3ga | GIF version |
Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
vtocl3ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl3ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl3ga.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
vtocl3ga.4 | ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) |
Ref | Expression |
---|---|
vtocl3ga | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2296 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2296 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2296 | . 2 ⊢ Ⅎ𝑧𝐴 | |
4 | nfcv 2296 | . 2 ⊢ Ⅎ𝑦𝐵 | |
5 | nfcv 2296 | . 2 ⊢ Ⅎ𝑧𝐵 | |
6 | nfcv 2296 | . 2 ⊢ Ⅎ𝑧𝐶 | |
7 | nfv 1505 | . 2 ⊢ Ⅎ𝑥𝜓 | |
8 | nfv 1505 | . 2 ⊢ Ⅎ𝑦𝜒 | |
9 | nfv 1505 | . 2 ⊢ Ⅎ𝑧𝜃 | |
10 | vtocl3ga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
11 | vtocl3ga.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
12 | vtocl3ga.3 | . 2 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
13 | vtocl3ga.4 | . 2 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | vtocl3gaf 2778 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 963 = wceq 1332 ∈ wcel 2125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 |
This theorem is referenced by: preq12bg 3732 pocl 4258 sowlin 4275 |
Copyright terms: Public domain | W3C validator |