| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocl3ga | GIF version | ||
| Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| vtocl3ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl3ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl3ga.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
| vtocl3ga.4 | ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) |
| Ref | Expression |
|---|---|
| vtocl3ga | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2348 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfcv 2348 | . 2 ⊢ Ⅎ𝑧𝐴 | |
| 4 | nfcv 2348 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 5 | nfcv 2348 | . 2 ⊢ Ⅎ𝑧𝐵 | |
| 6 | nfcv 2348 | . 2 ⊢ Ⅎ𝑧𝐶 | |
| 7 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 8 | nfv 1551 | . 2 ⊢ Ⅎ𝑦𝜒 | |
| 9 | nfv 1551 | . 2 ⊢ Ⅎ𝑧𝜃 | |
| 10 | vtocl3ga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 11 | vtocl3ga.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 12 | vtocl3ga.3 | . 2 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
| 13 | vtocl3ga.4 | . 2 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | vtocl3gaf 2842 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: preq12bg 3814 pocl 4350 sowlin 4367 |
| Copyright terms: Public domain | W3C validator |