ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl3ga GIF version

Theorem vtocl3ga 2796
Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
vtocl3ga.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl3ga.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl3ga.3 (𝑧 = 𝐶 → (𝜒𝜃))
vtocl3ga.4 ((𝑥𝐷𝑦𝑅𝑧𝑆) → 𝜑)
Assertion
Ref Expression
vtocl3ga ((𝐴𝐷𝐵𝑅𝐶𝑆) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝐷,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜓,𝑥   𝜒,𝑦   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧)   𝜃(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem vtocl3ga
StepHypRef Expression
1 nfcv 2308 . 2 𝑥𝐴
2 nfcv 2308 . 2 𝑦𝐴
3 nfcv 2308 . 2 𝑧𝐴
4 nfcv 2308 . 2 𝑦𝐵
5 nfcv 2308 . 2 𝑧𝐵
6 nfcv 2308 . 2 𝑧𝐶
7 nfv 1516 . 2 𝑥𝜓
8 nfv 1516 . 2 𝑦𝜒
9 nfv 1516 . 2 𝑧𝜃
10 vtocl3ga.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
11 vtocl3ga.2 . 2 (𝑦 = 𝐵 → (𝜓𝜒))
12 vtocl3ga.3 . 2 (𝑧 = 𝐶 → (𝜒𝜃))
13 vtocl3ga.4 . 2 ((𝑥𝐷𝑦𝑅𝑧𝑆) → 𝜑)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13vtocl3gaf 2795 1 ((𝐴𝐷𝐵𝑅𝐶𝑆) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968   = wceq 1343  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  preq12bg  3753  pocl  4281  sowlin  4298
  Copyright terms: Public domain W3C validator