| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pocl | Unicode version | ||
| Description: Properties of partial order relation in class notation. (Contributed by NM, 27-Mar-1997.) |
| Ref | Expression |
|---|---|
| pocl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . . 7
| |
| 2 | 1, 1 | breq12d 4072 |
. . . . . 6
|
| 3 | 2 | notbid 669 |
. . . . 5
|
| 4 | breq1 4062 |
. . . . . . 7
| |
| 5 | 4 | anbi1d 465 |
. . . . . 6
|
| 6 | breq1 4062 |
. . . . . 6
| |
| 7 | 5, 6 | imbi12d 234 |
. . . . 5
|
| 8 | 3, 7 | anbi12d 473 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | breq2 4063 |
. . . . . . 7
| |
| 11 | breq1 4062 |
. . . . . . 7
| |
| 12 | 10, 11 | anbi12d 473 |
. . . . . 6
|
| 13 | 12 | imbi1d 231 |
. . . . 5
|
| 14 | 13 | anbi2d 464 |
. . . 4
|
| 15 | 14 | imbi2d 230 |
. . 3
|
| 16 | breq2 4063 |
. . . . . . 7
| |
| 17 | 16 | anbi2d 464 |
. . . . . 6
|
| 18 | breq2 4063 |
. . . . . 6
| |
| 19 | 17, 18 | imbi12d 234 |
. . . . 5
|
| 20 | 19 | anbi2d 464 |
. . . 4
|
| 21 | 20 | imbi2d 230 |
. . 3
|
| 22 | df-po 4361 |
. . . . . . . 8
| |
| 23 | r3al 2552 |
. . . . . . . 8
| |
| 24 | 22, 23 | bitri 184 |
. . . . . . 7
|
| 25 | 24 | biimpi 120 |
. . . . . 6
|
| 26 | 25 | 19.21bbi 1583 |
. . . . 5
|
| 27 | 26 | 19.21bi 1582 |
. . . 4
|
| 28 | 27 | com12 30 |
. . 3
|
| 29 | 9, 15, 21, 28 | vtocl3ga 2848 |
. 2
|
| 30 | 29 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-po 4361 |
| This theorem is referenced by: poirr 4372 potr 4373 |
| Copyright terms: Public domain | W3C validator |