| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pocl | Unicode version | ||
| Description: Properties of partial order relation in class notation. (Contributed by NM, 27-Mar-1997.) | 
| Ref | Expression | 
|---|---|
| pocl | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | 
. . . . . . 7
 | |
| 2 | 1, 1 | breq12d 4046 | 
. . . . . 6
 | 
| 3 | 2 | notbid 668 | 
. . . . 5
 | 
| 4 | breq1 4036 | 
. . . . . . 7
 | |
| 5 | 4 | anbi1d 465 | 
. . . . . 6
 | 
| 6 | breq1 4036 | 
. . . . . 6
 | |
| 7 | 5, 6 | imbi12d 234 | 
. . . . 5
 | 
| 8 | 3, 7 | anbi12d 473 | 
. . . 4
 | 
| 9 | 8 | imbi2d 230 | 
. . 3
 | 
| 10 | breq2 4037 | 
. . . . . . 7
 | |
| 11 | breq1 4036 | 
. . . . . . 7
 | |
| 12 | 10, 11 | anbi12d 473 | 
. . . . . 6
 | 
| 13 | 12 | imbi1d 231 | 
. . . . 5
 | 
| 14 | 13 | anbi2d 464 | 
. . . 4
 | 
| 15 | 14 | imbi2d 230 | 
. . 3
 | 
| 16 | breq2 4037 | 
. . . . . . 7
 | |
| 17 | 16 | anbi2d 464 | 
. . . . . 6
 | 
| 18 | breq2 4037 | 
. . . . . 6
 | |
| 19 | 17, 18 | imbi12d 234 | 
. . . . 5
 | 
| 20 | 19 | anbi2d 464 | 
. . . 4
 | 
| 21 | 20 | imbi2d 230 | 
. . 3
 | 
| 22 | df-po 4331 | 
. . . . . . . 8
 | |
| 23 | r3al 2541 | 
. . . . . . . 8
 | |
| 24 | 22, 23 | bitri 184 | 
. . . . . . 7
 | 
| 25 | 24 | biimpi 120 | 
. . . . . 6
 | 
| 26 | 25 | 19.21bbi 1573 | 
. . . . 5
 | 
| 27 | 26 | 19.21bi 1572 | 
. . . 4
 | 
| 28 | 27 | com12 30 | 
. . 3
 | 
| 29 | 9, 15, 21, 28 | vtocl3ga 2834 | 
. 2
 | 
| 30 | 29 | com12 30 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-po 4331 | 
| This theorem is referenced by: poirr 4342 potr 4343 | 
| Copyright terms: Public domain | W3C validator |