Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pocl | Unicode version |
Description: Properties of partial order relation in class notation. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
pocl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . . . 7 | |
2 | 1, 1 | breq12d 3995 | . . . . . 6 |
3 | 2 | notbid 657 | . . . . 5 |
4 | breq1 3985 | . . . . . . 7 | |
5 | 4 | anbi1d 461 | . . . . . 6 |
6 | breq1 3985 | . . . . . 6 | |
7 | 5, 6 | imbi12d 233 | . . . . 5 |
8 | 3, 7 | anbi12d 465 | . . . 4 |
9 | 8 | imbi2d 229 | . . 3 |
10 | breq2 3986 | . . . . . . 7 | |
11 | breq1 3985 | . . . . . . 7 | |
12 | 10, 11 | anbi12d 465 | . . . . . 6 |
13 | 12 | imbi1d 230 | . . . . 5 |
14 | 13 | anbi2d 460 | . . . 4 |
15 | 14 | imbi2d 229 | . . 3 |
16 | breq2 3986 | . . . . . . 7 | |
17 | 16 | anbi2d 460 | . . . . . 6 |
18 | breq2 3986 | . . . . . 6 | |
19 | 17, 18 | imbi12d 233 | . . . . 5 |
20 | 19 | anbi2d 460 | . . . 4 |
21 | 20 | imbi2d 229 | . . 3 |
22 | df-po 4274 | . . . . . . . 8 | |
23 | r3al 2510 | . . . . . . . 8 | |
24 | 22, 23 | bitri 183 | . . . . . . 7 |
25 | 24 | biimpi 119 | . . . . . 6 |
26 | 25 | 19.21bbi 1547 | . . . . 5 |
27 | 26 | 19.21bi 1546 | . . . 4 |
28 | 27 | com12 30 | . . 3 |
29 | 9, 15, 21, 28 | vtocl3ga 2796 | . 2 |
30 | 29 | com12 30 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wal 1341 wceq 1343 wcel 2136 wral 2444 class class class wbr 3982 wpo 4272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-po 4274 |
This theorem is referenced by: poirr 4285 potr 4286 |
Copyright terms: Public domain | W3C validator |