Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > preq12bg | Unicode version |
Description: Closed form of preq12b 3757. (Contributed by Scott Fenton, 28-Mar-2014.) |
Ref | Expression |
---|---|
preq12bg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3660 | . . . . . . 7 | |
2 | 1 | eqeq1d 2179 | . . . . . 6 |
3 | eqeq1 2177 | . . . . . . . 8 | |
4 | 3 | anbi1d 462 | . . . . . . 7 |
5 | eqeq1 2177 | . . . . . . . 8 | |
6 | 5 | anbi1d 462 | . . . . . . 7 |
7 | 4, 6 | orbi12d 788 | . . . . . 6 |
8 | 2, 7 | bibi12d 234 | . . . . 5 |
9 | 8 | imbi2d 229 | . . . 4 |
10 | preq2 3661 | . . . . . . 7 | |
11 | 10 | eqeq1d 2179 | . . . . . 6 |
12 | eqeq1 2177 | . . . . . . . 8 | |
13 | 12 | anbi2d 461 | . . . . . . 7 |
14 | eqeq1 2177 | . . . . . . . 8 | |
15 | 14 | anbi2d 461 | . . . . . . 7 |
16 | 13, 15 | orbi12d 788 | . . . . . 6 |
17 | 11, 16 | bibi12d 234 | . . . . 5 |
18 | 17 | imbi2d 229 | . . . 4 |
19 | preq1 3660 | . . . . . . 7 | |
20 | 19 | eqeq2d 2182 | . . . . . 6 |
21 | eqeq2 2180 | . . . . . . . 8 | |
22 | 21 | anbi1d 462 | . . . . . . 7 |
23 | eqeq2 2180 | . . . . . . . 8 | |
24 | 23 | anbi2d 461 | . . . . . . 7 |
25 | 22, 24 | orbi12d 788 | . . . . . 6 |
26 | 20, 25 | bibi12d 234 | . . . . 5 |
27 | 26 | imbi2d 229 | . . . 4 |
28 | preq2 3661 | . . . . . . 7 | |
29 | 28 | eqeq2d 2182 | . . . . . 6 |
30 | eqeq2 2180 | . . . . . . . 8 | |
31 | 30 | anbi2d 461 | . . . . . . 7 |
32 | eqeq2 2180 | . . . . . . . 8 | |
33 | 32 | anbi1d 462 | . . . . . . 7 |
34 | 31, 33 | orbi12d 788 | . . . . . 6 |
35 | vex 2733 | . . . . . . 7 | |
36 | vex 2733 | . . . . . . 7 | |
37 | vex 2733 | . . . . . . 7 | |
38 | vex 2733 | . . . . . . 7 | |
39 | 35, 36, 37, 38 | preq12b 3757 | . . . . . 6 |
40 | 29, 34, 39 | vtoclbg 2791 | . . . . 5 |
41 | 40 | a1i 9 | . . . 4 |
42 | 9, 18, 27, 41 | vtocl3ga 2800 | . . 3 |
43 | 42 | 3expa 1198 | . 2 |
44 | 43 | impr 377 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 |
This theorem is referenced by: prneimg 3761 pythagtriplem2 12220 pythagtrip 12237 |
Copyright terms: Public domain | W3C validator |