Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > preq12bg | Unicode version |
Description: Closed form of preq12b 3749. (Contributed by Scott Fenton, 28-Mar-2014.) |
Ref | Expression |
---|---|
preq12bg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3652 | . . . . . . 7 | |
2 | 1 | eqeq1d 2174 | . . . . . 6 |
3 | eqeq1 2172 | . . . . . . . 8 | |
4 | 3 | anbi1d 461 | . . . . . . 7 |
5 | eqeq1 2172 | . . . . . . . 8 | |
6 | 5 | anbi1d 461 | . . . . . . 7 |
7 | 4, 6 | orbi12d 783 | . . . . . 6 |
8 | 2, 7 | bibi12d 234 | . . . . 5 |
9 | 8 | imbi2d 229 | . . . 4 |
10 | preq2 3653 | . . . . . . 7 | |
11 | 10 | eqeq1d 2174 | . . . . . 6 |
12 | eqeq1 2172 | . . . . . . . 8 | |
13 | 12 | anbi2d 460 | . . . . . . 7 |
14 | eqeq1 2172 | . . . . . . . 8 | |
15 | 14 | anbi2d 460 | . . . . . . 7 |
16 | 13, 15 | orbi12d 783 | . . . . . 6 |
17 | 11, 16 | bibi12d 234 | . . . . 5 |
18 | 17 | imbi2d 229 | . . . 4 |
19 | preq1 3652 | . . . . . . 7 | |
20 | 19 | eqeq2d 2177 | . . . . . 6 |
21 | eqeq2 2175 | . . . . . . . 8 | |
22 | 21 | anbi1d 461 | . . . . . . 7 |
23 | eqeq2 2175 | . . . . . . . 8 | |
24 | 23 | anbi2d 460 | . . . . . . 7 |
25 | 22, 24 | orbi12d 783 | . . . . . 6 |
26 | 20, 25 | bibi12d 234 | . . . . 5 |
27 | 26 | imbi2d 229 | . . . 4 |
28 | preq2 3653 | . . . . . . 7 | |
29 | 28 | eqeq2d 2177 | . . . . . 6 |
30 | eqeq2 2175 | . . . . . . . 8 | |
31 | 30 | anbi2d 460 | . . . . . . 7 |
32 | eqeq2 2175 | . . . . . . . 8 | |
33 | 32 | anbi1d 461 | . . . . . . 7 |
34 | 31, 33 | orbi12d 783 | . . . . . 6 |
35 | vex 2728 | . . . . . . 7 | |
36 | vex 2728 | . . . . . . 7 | |
37 | vex 2728 | . . . . . . 7 | |
38 | vex 2728 | . . . . . . 7 | |
39 | 35, 36, 37, 38 | preq12b 3749 | . . . . . 6 |
40 | 29, 34, 39 | vtoclbg 2786 | . . . . 5 |
41 | 40 | a1i 9 | . . . 4 |
42 | 9, 18, 27, 41 | vtocl3ga 2795 | . . 3 |
43 | 42 | 3expa 1193 | . 2 |
44 | 43 | impr 377 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 cpr 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 |
This theorem is referenced by: prneimg 3753 pythagtriplem2 12194 pythagtrip 12211 |
Copyright terms: Public domain | W3C validator |