| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > preq12bg | Unicode version | ||
| Description: Closed form of preq12b 3800. (Contributed by Scott Fenton, 28-Mar-2014.) | 
| Ref | Expression | 
|---|---|
| preq12bg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | preq1 3699 | 
. . . . . . 7
 | |
| 2 | 1 | eqeq1d 2205 | 
. . . . . 6
 | 
| 3 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 4 | 3 | anbi1d 465 | 
. . . . . . 7
 | 
| 5 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 6 | 5 | anbi1d 465 | 
. . . . . . 7
 | 
| 7 | 4, 6 | orbi12d 794 | 
. . . . . 6
 | 
| 8 | 2, 7 | bibi12d 235 | 
. . . . 5
 | 
| 9 | 8 | imbi2d 230 | 
. . . 4
 | 
| 10 | preq2 3700 | 
. . . . . . 7
 | |
| 11 | 10 | eqeq1d 2205 | 
. . . . . 6
 | 
| 12 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 13 | 12 | anbi2d 464 | 
. . . . . . 7
 | 
| 14 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 15 | 14 | anbi2d 464 | 
. . . . . . 7
 | 
| 16 | 13, 15 | orbi12d 794 | 
. . . . . 6
 | 
| 17 | 11, 16 | bibi12d 235 | 
. . . . 5
 | 
| 18 | 17 | imbi2d 230 | 
. . . 4
 | 
| 19 | preq1 3699 | 
. . . . . . 7
 | |
| 20 | 19 | eqeq2d 2208 | 
. . . . . 6
 | 
| 21 | eqeq2 2206 | 
. . . . . . . 8
 | |
| 22 | 21 | anbi1d 465 | 
. . . . . . 7
 | 
| 23 | eqeq2 2206 | 
. . . . . . . 8
 | |
| 24 | 23 | anbi2d 464 | 
. . . . . . 7
 | 
| 25 | 22, 24 | orbi12d 794 | 
. . . . . 6
 | 
| 26 | 20, 25 | bibi12d 235 | 
. . . . 5
 | 
| 27 | 26 | imbi2d 230 | 
. . . 4
 | 
| 28 | preq2 3700 | 
. . . . . . 7
 | |
| 29 | 28 | eqeq2d 2208 | 
. . . . . 6
 | 
| 30 | eqeq2 2206 | 
. . . . . . . 8
 | |
| 31 | 30 | anbi2d 464 | 
. . . . . . 7
 | 
| 32 | eqeq2 2206 | 
. . . . . . . 8
 | |
| 33 | 32 | anbi1d 465 | 
. . . . . . 7
 | 
| 34 | 31, 33 | orbi12d 794 | 
. . . . . 6
 | 
| 35 | vex 2766 | 
. . . . . . 7
 | |
| 36 | vex 2766 | 
. . . . . . 7
 | |
| 37 | vex 2766 | 
. . . . . . 7
 | |
| 38 | vex 2766 | 
. . . . . . 7
 | |
| 39 | 35, 36, 37, 38 | preq12b 3800 | 
. . . . . 6
 | 
| 40 | 29, 34, 39 | vtoclbg 2825 | 
. . . . 5
 | 
| 41 | 40 | a1i 9 | 
. . . 4
 | 
| 42 | 9, 18, 27, 41 | vtocl3ga 2834 | 
. . 3
 | 
| 43 | 42 | 3expa 1205 | 
. 2
 | 
| 44 | 43 | impr 379 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: prneimg 3804 pythagtriplem2 12435 pythagtrip 12452 | 
| Copyright terms: Public domain | W3C validator |