| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmin | GIF version | ||
| Description: The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| dmin | ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1677 | . . 3 ⊢ (∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 2 | eldm2 4920 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵)) |
| 4 | elin 3387 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 5 | 4 | exbii 1651 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 6 | 3, 5 | bitri 184 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 7 | elin 3387 | . . . 4 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵)) | |
| 8 | 2 | eldm2 4920 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 9 | 2 | eldm2 4920 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 10 | 8, 9 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 11 | 7, 10 | bitri 184 | . . 3 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 12 | 1, 6, 11 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) → 𝑥 ∈ (dom 𝐴 ∩ dom 𝐵)) |
| 13 | 12 | ssriv 3228 | 1 ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1538 ∈ wcel 2200 ∩ cin 3196 ⊆ wss 3197 〈cop 3669 dom cdm 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-dm 4728 |
| This theorem is referenced by: rnin 5137 |
| Copyright terms: Public domain | W3C validator |