ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmin GIF version

Theorem dmin 4895
Description: The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
dmin dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)

Proof of Theorem dmin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.40 1655 . . 3 (∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
2 vex 2776 . . . . 5 𝑥 ∈ V
32eldm2 4885 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
4 elin 3360 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
54exbii 1629 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
63, 5bitri 184 . . 3 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
7 elin 3360 . . . 4 (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥 ∈ dom 𝐵))
82eldm2 4885 . . . . 5 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
92eldm2 4885 . . . . 5 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
108, 9anbi12i 460 . . . 4 ((𝑥 ∈ dom 𝐴𝑥 ∈ dom 𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
117, 10bitri 184 . . 3 (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
121, 6, 113imtr4i 201 . 2 (𝑥 ∈ dom (𝐴𝐵) → 𝑥 ∈ (dom 𝐴 ∩ dom 𝐵))
1312ssriv 3201 1 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1516  wcel 2177  cin 3169  wss 3170  cop 3641  dom cdm 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-dm 4693
This theorem is referenced by:  rnin  5101
  Copyright terms: Public domain W3C validator