ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmin GIF version

Theorem dmin 4930
Description: The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
dmin dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)

Proof of Theorem dmin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.40 1677 . . 3 (∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
2 vex 2802 . . . . 5 𝑥 ∈ V
32eldm2 4920 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
4 elin 3387 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
54exbii 1651 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
63, 5bitri 184 . . 3 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
7 elin 3387 . . . 4 (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥 ∈ dom 𝐵))
82eldm2 4920 . . . . 5 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
92eldm2 4920 . . . . 5 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
108, 9anbi12i 460 . . . 4 ((𝑥 ∈ dom 𝐴𝑥 ∈ dom 𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
117, 10bitri 184 . . 3 (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
121, 6, 113imtr4i 201 . 2 (𝑥 ∈ dom (𝐴𝐵) → 𝑥 ∈ (dom 𝐴 ∩ dom 𝐵))
1312ssriv 3228 1 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1538  wcel 2200  cin 3196  wss 3197  cop 3669  dom cdm 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-dm 4728
This theorem is referenced by:  rnin  5137
  Copyright terms: Public domain W3C validator