![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmin | GIF version |
Description: The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
dmin | ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1631 | . . 3 ⊢ (∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
2 | vex 2741 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | eldm2 4826 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ∩ 𝐵)) |
4 | elin 3319 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∩ 𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
5 | 4 | exbii 1605 | . . . 4 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ∩ 𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
6 | 3, 5 | bitri 184 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
7 | elin 3319 | . . . 4 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵)) | |
8 | 2 | eldm2 4826 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
9 | 2 | eldm2 4826 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵) |
10 | 8, 9 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
11 | 7, 10 | bitri 184 | . . 3 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
12 | 1, 6, 11 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) → 𝑥 ∈ (dom 𝐴 ∩ dom 𝐵)) |
13 | 12 | ssriv 3160 | 1 ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃wex 1492 ∈ wcel 2148 ∩ cin 3129 ⊆ wss 3130 ⟨cop 3596 dom cdm 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-dm 4637 |
This theorem is referenced by: rnin 5039 |
Copyright terms: Public domain | W3C validator |