![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniin | GIF version |
Description: The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniin | ⊢ ∪ (𝐴 ∩ 𝐵) ⊆ (∪ 𝐴 ∩ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1631 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
2 | elin 3320 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
3 | 2 | anbi2i 457 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
4 | anandi 590 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
5 | 3, 4 | bitri 184 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | exbii 1605 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
7 | eluni 3814 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
8 | eluni 3814 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
9 | 7, 8 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
10 | 1, 6, 9 | 3imtr4i 201 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) → (𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵)) |
11 | eluni 3814 | . . 3 ⊢ (𝑥 ∈ ∪ (𝐴 ∩ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
12 | elin 3320 | . . 3 ⊢ (𝑥 ∈ (∪ 𝐴 ∩ ∪ 𝐵) ↔ (𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵)) | |
13 | 10, 11, 12 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ ∪ (𝐴 ∩ 𝐵) → 𝑥 ∈ (∪ 𝐴 ∩ ∪ 𝐵)) |
14 | 13 | ssriv 3161 | 1 ⊢ ∪ (𝐴 ∩ 𝐵) ⊆ (∪ 𝐴 ∩ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃wex 1492 ∈ wcel 2148 ∩ cin 3130 ⊆ wss 3131 ∪ cuni 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-in 3137 df-ss 3144 df-uni 3812 |
This theorem is referenced by: tgval 12716 |
Copyright terms: Public domain | W3C validator |