ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpqlem GIF version

Theorem dmaddpqlem 7389
Description: Decomposition of a positive fraction into numerator and denominator. Lemma for dmaddpq 7391. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
dmaddpqlem (𝑥Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
Distinct variable group:   𝑤,𝑣,𝑥

Proof of Theorem dmaddpqlem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elqsi 6600 . . 3 (𝑥 ∈ ((N × N) / ~Q ) → ∃𝑎 ∈ (N × N)𝑥 = [𝑎] ~Q )
2 elxpi 4654 . . . . . . . 8 (𝑎 ∈ (N × N) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)))
3 simpl 109 . . . . . . . . 9 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) → 𝑎 = ⟨𝑤, 𝑣⟩)
432eximi 1611 . . . . . . . 8 (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) → ∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩)
52, 4syl 14 . . . . . . 7 (𝑎 ∈ (N × N) → ∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩)
65anim1i 340 . . . . . 6 ((𝑎 ∈ (N × N) ∧ 𝑥 = [𝑎] ~Q ) → (∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ))
7 19.41vv 1913 . . . . . 6 (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) ↔ (∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ))
86, 7sylibr 134 . . . . 5 ((𝑎 ∈ (N × N) ∧ 𝑥 = [𝑎] ~Q ) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ))
9 simpr 110 . . . . . . 7 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → 𝑥 = [𝑎] ~Q )
10 eceq1 6583 . . . . . . . 8 (𝑎 = ⟨𝑤, 𝑣⟩ → [𝑎] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
1110adantr 276 . . . . . . 7 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → [𝑎] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
129, 11eqtrd 2220 . . . . . 6 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
13122eximi 1611 . . . . 5 (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
148, 13syl 14 . . . 4 ((𝑎 ∈ (N × N) ∧ 𝑥 = [𝑎] ~Q ) → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
1514rexlimiva 2599 . . 3 (∃𝑎 ∈ (N × N)𝑥 = [𝑎] ~Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
161, 15syl 14 . 2 (𝑥 ∈ ((N × N) / ~Q ) → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
17 df-nqqs 7360 . 2 Q = ((N × N) / ~Q )
1816, 17eleq2s 2282 1 (𝑥Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wex 1502  wcel 2158  wrex 2466  cop 3607   × cxp 4636  [cec 6546   / cqs 6547  Ncnpi 7284   ~Q ceq 7291  Qcnq 7292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-xp 4644  df-cnv 4646  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-ec 6550  df-qs 6554  df-nqqs 7360
This theorem is referenced by:  dmaddpq  7391  dmmulpq  7392
  Copyright terms: Public domain W3C validator