ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpqlem GIF version

Theorem dmaddpqlem 7472
Description: Decomposition of a positive fraction into numerator and denominator. Lemma for dmaddpq 7474. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
dmaddpqlem (𝑥Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
Distinct variable group:   𝑤,𝑣,𝑥

Proof of Theorem dmaddpqlem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elqsi 6664 . . 3 (𝑥 ∈ ((N × N) / ~Q ) → ∃𝑎 ∈ (N × N)𝑥 = [𝑎] ~Q )
2 elxpi 4689 . . . . . . . 8 (𝑎 ∈ (N × N) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)))
3 simpl 109 . . . . . . . . 9 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) → 𝑎 = ⟨𝑤, 𝑣⟩)
432eximi 1623 . . . . . . . 8 (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) → ∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩)
52, 4syl 14 . . . . . . 7 (𝑎 ∈ (N × N) → ∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩)
65anim1i 340 . . . . . 6 ((𝑎 ∈ (N × N) ∧ 𝑥 = [𝑎] ~Q ) → (∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ))
7 19.41vv 1926 . . . . . 6 (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) ↔ (∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ))
86, 7sylibr 134 . . . . 5 ((𝑎 ∈ (N × N) ∧ 𝑥 = [𝑎] ~Q ) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ))
9 simpr 110 . . . . . . 7 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → 𝑥 = [𝑎] ~Q )
10 eceq1 6645 . . . . . . . 8 (𝑎 = ⟨𝑤, 𝑣⟩ → [𝑎] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
1110adantr 276 . . . . . . 7 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → [𝑎] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
129, 11eqtrd 2237 . . . . . 6 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
13122eximi 1623 . . . . 5 (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
148, 13syl 14 . . . 4 ((𝑎 ∈ (N × N) ∧ 𝑥 = [𝑎] ~Q ) → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
1514rexlimiva 2617 . . 3 (∃𝑎 ∈ (N × N)𝑥 = [𝑎] ~Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
161, 15syl 14 . 2 (𝑥 ∈ ((N × N) / ~Q ) → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
17 df-nqqs 7443 . 2 Q = ((N × N) / ~Q )
1816, 17eleq2s 2299 1 (𝑥Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wex 1514  wcel 2175  wrex 2484  cop 3635   × cxp 4671  [cec 6608   / cqs 6609  Ncnpi 7367   ~Q ceq 7374  Qcnq 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4679  df-cnv 4681  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-ec 6612  df-qs 6616  df-nqqs 7443
This theorem is referenced by:  dmaddpq  7474  dmmulpq  7475
  Copyright terms: Public domain W3C validator