ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpqlem GIF version

Theorem dmaddpqlem 7560
Description: Decomposition of a positive fraction into numerator and denominator. Lemma for dmaddpq 7562. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
dmaddpqlem (𝑥Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
Distinct variable group:   𝑤,𝑣,𝑥

Proof of Theorem dmaddpqlem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elqsi 6732 . . 3 (𝑥 ∈ ((N × N) / ~Q ) → ∃𝑎 ∈ (N × N)𝑥 = [𝑎] ~Q )
2 elxpi 4734 . . . . . . . 8 (𝑎 ∈ (N × N) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)))
3 simpl 109 . . . . . . . . 9 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) → 𝑎 = ⟨𝑤, 𝑣⟩)
432eximi 1647 . . . . . . . 8 (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) → ∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩)
52, 4syl 14 . . . . . . 7 (𝑎 ∈ (N × N) → ∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩)
65anim1i 340 . . . . . 6 ((𝑎 ∈ (N × N) ∧ 𝑥 = [𝑎] ~Q ) → (∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ))
7 19.41vv 1950 . . . . . 6 (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) ↔ (∃𝑤𝑣 𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ))
86, 7sylibr 134 . . . . 5 ((𝑎 ∈ (N × N) ∧ 𝑥 = [𝑎] ~Q ) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ))
9 simpr 110 . . . . . . 7 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → 𝑥 = [𝑎] ~Q )
10 eceq1 6713 . . . . . . . 8 (𝑎 = ⟨𝑤, 𝑣⟩ → [𝑎] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
1110adantr 276 . . . . . . 7 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → [𝑎] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
129, 11eqtrd 2262 . . . . . 6 ((𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
13122eximi 1647 . . . . 5 (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = [𝑎] ~Q ) → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
148, 13syl 14 . . . 4 ((𝑎 ∈ (N × N) ∧ 𝑥 = [𝑎] ~Q ) → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
1514rexlimiva 2643 . . 3 (∃𝑎 ∈ (N × N)𝑥 = [𝑎] ~Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
161, 15syl 14 . 2 (𝑥 ∈ ((N × N) / ~Q ) → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
17 df-nqqs 7531 . 2 Q = ((N × N) / ~Q )
1816, 17eleq2s 2324 1 (𝑥Q → ∃𝑤𝑣 𝑥 = [⟨𝑤, 𝑣⟩] ~Q )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  wrex 2509  cop 3669   × cxp 4716  [cec 6676   / cqs 6677  Ncnpi 7455   ~Q ceq 7462  Qcnq 7463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-ec 6680  df-qs 6684  df-nqqs 7531
This theorem is referenced by:  dmaddpq  7562  dmmulpq  7563
  Copyright terms: Public domain W3C validator