ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpi GIF version

Theorem nqpi 7573
Description: Decomposition of a positive fraction into numerator and denominator. Similar to dmaddpqlem 7572 but also shows that the numerator and denominator are positive integers. (Contributed by Jim Kingdon, 20-Sep-2019.)
Assertion
Ref Expression
nqpi (𝐴Q → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
Distinct variable group:   𝑣,𝐴,𝑤

Proof of Theorem nqpi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elqsi 6742 . . 3 (𝐴 ∈ ((N × N) / ~Q ) → ∃𝑎 ∈ (N × N)𝐴 = [𝑎] ~Q )
2 elxpi 4735 . . . . . . 7 (𝑎 ∈ (N × N) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)))
32anim1i 340 . . . . . 6 ((𝑎 ∈ (N × N) ∧ 𝐴 = [𝑎] ~Q ) → (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ))
4 19.41vv 1950 . . . . . 6 (∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) ↔ (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ))
53, 4sylibr 134 . . . . 5 ((𝑎 ∈ (N × N) ∧ 𝐴 = [𝑎] ~Q ) → ∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ))
6 simplr 528 . . . . . . 7 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → (𝑤N𝑣N))
7 simpr 110 . . . . . . . 8 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → 𝐴 = [𝑎] ~Q )
8 eceq1 6723 . . . . . . . . 9 (𝑎 = ⟨𝑤, 𝑣⟩ → [𝑎] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
98ad2antrr 488 . . . . . . . 8 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → [𝑎] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
107, 9eqtrd 2262 . . . . . . 7 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → 𝐴 = [⟨𝑤, 𝑣⟩] ~Q )
116, 10jca 306 . . . . . 6 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → ((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
12112eximi 1647 . . . . 5 (∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
135, 12syl 14 . . . 4 ((𝑎 ∈ (N × N) ∧ 𝐴 = [𝑎] ~Q ) → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
1413rexlimiva 2643 . . 3 (∃𝑎 ∈ (N × N)𝐴 = [𝑎] ~Q → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
151, 14syl 14 . 2 (𝐴 ∈ ((N × N) / ~Q ) → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
16 df-nqqs 7543 . 2 Q = ((N × N) / ~Q )
1715, 16eleq2s 2324 1 (𝐴Q → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  wrex 2509  cop 3669   × cxp 4717  [cec 6686   / cqs 6687  Ncnpi 7467   ~Q ceq 7474  Qcnq 7475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-ec 6690  df-qs 6694  df-nqqs 7543
This theorem is referenced by:  ltdcnq  7592  archnqq  7612  nqpnq0nq  7648  nqnq0a  7649  nqnq0m  7650
  Copyright terms: Public domain W3C validator