| Step | Hyp | Ref
| Expression |
| 1 | | elqsi 6646 |
. . 3
⊢ (𝐴 ∈ ((N
× N) / ~Q ) →
∃𝑎 ∈
(N × N)𝐴 = [𝑎] ~Q
) |
| 2 | | elxpi 4679 |
. . . . . . 7
⊢ (𝑎 ∈ (N ×
N) → ∃𝑤∃𝑣(𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈
N))) |
| 3 | 2 | anim1i 340 |
. . . . . 6
⊢ ((𝑎 ∈ (N ×
N) ∧ 𝐴 =
[𝑎]
~Q ) → (∃𝑤∃𝑣(𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q
)) |
| 4 | | 19.41vv 1918 |
. . . . . 6
⊢
(∃𝑤∃𝑣((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) ↔
(∃𝑤∃𝑣(𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q
)) |
| 5 | 3, 4 | sylibr 134 |
. . . . 5
⊢ ((𝑎 ∈ (N ×
N) ∧ 𝐴 =
[𝑎]
~Q ) → ∃𝑤∃𝑣((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q
)) |
| 6 | | simplr 528 |
. . . . . . 7
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) → (𝑤 ∈ N ∧
𝑣 ∈
N)) |
| 7 | | simpr 110 |
. . . . . . . 8
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) → 𝐴 = [𝑎] ~Q
) |
| 8 | | eceq1 6627 |
. . . . . . . . 9
⊢ (𝑎 = 〈𝑤, 𝑣〉 → [𝑎] ~Q = [〈𝑤, 𝑣〉] ~Q
) |
| 9 | 8 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) → [𝑎] ~Q =
[〈𝑤, 𝑣〉]
~Q ) |
| 10 | 7, 9 | eqtrd 2229 |
. . . . . . 7
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) → 𝐴 = [〈𝑤, 𝑣〉] ~Q
) |
| 11 | 6, 10 | jca 306 |
. . . . . 6
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) →
((𝑤 ∈ N
∧ 𝑣 ∈
N) ∧ 𝐴 =
[〈𝑤, 𝑣〉]
~Q )) |
| 12 | 11 | 2eximi 1615 |
. . . . 5
⊢
(∃𝑤∃𝑣((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) →
∃𝑤∃𝑣((𝑤 ∈ N ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q
)) |
| 13 | 5, 12 | syl 14 |
. . . 4
⊢ ((𝑎 ∈ (N ×
N) ∧ 𝐴 =
[𝑎]
~Q ) → ∃𝑤∃𝑣((𝑤 ∈ N ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q
)) |
| 14 | 13 | rexlimiva 2609 |
. . 3
⊢
(∃𝑎 ∈
(N × N)𝐴 = [𝑎] ~Q →
∃𝑤∃𝑣((𝑤 ∈ N ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q
)) |
| 15 | 1, 14 | syl 14 |
. 2
⊢ (𝐴 ∈ ((N
× N) / ~Q ) →
∃𝑤∃𝑣((𝑤 ∈ N ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q
)) |
| 16 | | df-nqqs 7415 |
. 2
⊢
Q = ((N × N) /
~Q ) |
| 17 | 15, 16 | eleq2s 2291 |
1
⊢ (𝐴 ∈ Q →
∃𝑤∃𝑣((𝑤 ∈ N ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q
)) |