Step | Hyp | Ref
| Expression |
1 | | elqsi 6565 |
. . 3
⊢ (𝐴 ∈ ((N
× N) / ~Q ) →
∃𝑎 ∈
(N × N)𝐴 = [𝑎] ~Q
) |
2 | | elxpi 4627 |
. . . . . . 7
⊢ (𝑎 ∈ (N ×
N) → ∃𝑤∃𝑣(𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈
N))) |
3 | 2 | anim1i 338 |
. . . . . 6
⊢ ((𝑎 ∈ (N ×
N) ∧ 𝐴 =
[𝑎]
~Q ) → (∃𝑤∃𝑣(𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q
)) |
4 | | 19.41vv 1896 |
. . . . . 6
⊢
(∃𝑤∃𝑣((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) ↔
(∃𝑤∃𝑣(𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q
)) |
5 | 3, 4 | sylibr 133 |
. . . . 5
⊢ ((𝑎 ∈ (N ×
N) ∧ 𝐴 =
[𝑎]
~Q ) → ∃𝑤∃𝑣((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q
)) |
6 | | simplr 525 |
. . . . . . 7
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) → (𝑤 ∈ N ∧
𝑣 ∈
N)) |
7 | | simpr 109 |
. . . . . . . 8
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) → 𝐴 = [𝑎] ~Q
) |
8 | | eceq1 6548 |
. . . . . . . . 9
⊢ (𝑎 = 〈𝑤, 𝑣〉 → [𝑎] ~Q = [〈𝑤, 𝑣〉] ~Q
) |
9 | 8 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) → [𝑎] ~Q =
[〈𝑤, 𝑣〉]
~Q ) |
10 | 7, 9 | eqtrd 2203 |
. . . . . . 7
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) → 𝐴 = [〈𝑤, 𝑣〉] ~Q
) |
11 | 6, 10 | jca 304 |
. . . . . 6
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) →
((𝑤 ∈ N
∧ 𝑣 ∈
N) ∧ 𝐴 =
[〈𝑤, 𝑣〉]
~Q )) |
12 | 11 | 2eximi 1594 |
. . . . 5
⊢
(∃𝑤∃𝑣((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
𝐴 = [𝑎] ~Q ) →
∃𝑤∃𝑣((𝑤 ∈ N ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q
)) |
13 | 5, 12 | syl 14 |
. . . 4
⊢ ((𝑎 ∈ (N ×
N) ∧ 𝐴 =
[𝑎]
~Q ) → ∃𝑤∃𝑣((𝑤 ∈ N ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q
)) |
14 | 13 | rexlimiva 2582 |
. . 3
⊢
(∃𝑎 ∈
(N × N)𝐴 = [𝑎] ~Q →
∃𝑤∃𝑣((𝑤 ∈ N ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q
)) |
15 | 1, 14 | syl 14 |
. 2
⊢ (𝐴 ∈ ((N
× N) / ~Q ) →
∃𝑤∃𝑣((𝑤 ∈ N ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q
)) |
16 | | df-nqqs 7310 |
. 2
⊢
Q = ((N × N) /
~Q ) |
17 | 15, 16 | eleq2s 2265 |
1
⊢ (𝐴 ∈ Q →
∃𝑤∃𝑣((𝑤 ∈ N ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q
)) |