ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpi GIF version

Theorem nqpi 7376
Description: Decomposition of a positive fraction into numerator and denominator. Similar to dmaddpqlem 7375 but also shows that the numerator and denominator are positive integers. (Contributed by Jim Kingdon, 20-Sep-2019.)
Assertion
Ref Expression
nqpi (𝐴Q → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
Distinct variable group:   𝑣,𝐴,𝑤

Proof of Theorem nqpi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elqsi 6586 . . 3 (𝐴 ∈ ((N × N) / ~Q ) → ∃𝑎 ∈ (N × N)𝐴 = [𝑎] ~Q )
2 elxpi 4642 . . . . . . 7 (𝑎 ∈ (N × N) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)))
32anim1i 340 . . . . . 6 ((𝑎 ∈ (N × N) ∧ 𝐴 = [𝑎] ~Q ) → (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ))
4 19.41vv 1903 . . . . . 6 (∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) ↔ (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ))
53, 4sylibr 134 . . . . 5 ((𝑎 ∈ (N × N) ∧ 𝐴 = [𝑎] ~Q ) → ∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ))
6 simplr 528 . . . . . . 7 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → (𝑤N𝑣N))
7 simpr 110 . . . . . . . 8 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → 𝐴 = [𝑎] ~Q )
8 eceq1 6569 . . . . . . . . 9 (𝑎 = ⟨𝑤, 𝑣⟩ → [𝑎] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
98ad2antrr 488 . . . . . . . 8 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → [𝑎] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
107, 9eqtrd 2210 . . . . . . 7 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → 𝐴 = [⟨𝑤, 𝑣⟩] ~Q )
116, 10jca 306 . . . . . 6 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → ((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
12112eximi 1601 . . . . 5 (∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤N𝑣N)) ∧ 𝐴 = [𝑎] ~Q ) → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
135, 12syl 14 . . . 4 ((𝑎 ∈ (N × N) ∧ 𝐴 = [𝑎] ~Q ) → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
1413rexlimiva 2589 . . 3 (∃𝑎 ∈ (N × N)𝐴 = [𝑎] ~Q → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
151, 14syl 14 . 2 (𝐴 ∈ ((N × N) / ~Q ) → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
16 df-nqqs 7346 . 2 Q = ((N × N) / ~Q )
1715, 16eleq2s 2272 1 (𝐴Q → ∃𝑤𝑣((𝑤N𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1492  wcel 2148  wrex 2456  cop 3595   × cxp 4624  [cec 6532   / cqs 6533  Ncnpi 7270   ~Q ceq 7277  Qcnq 7278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-xp 4632  df-cnv 4634  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-ec 6536  df-qs 6540  df-nqqs 7346
This theorem is referenced by:  ltdcnq  7395  archnqq  7415  nqpnq0nq  7451  nqnq0a  7452  nqnq0m  7453
  Copyright terms: Public domain W3C validator