ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0nn GIF version

Theorem nq0nn 7509
Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
Assertion
Ref Expression
nq0nn (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
Distinct variable group:   𝑣,𝐴,𝑤

Proof of Theorem nq0nn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elqsi 6646 . . 3 (𝐴 ∈ ((ω × N) / ~Q0 ) → ∃𝑎 ∈ (ω × N)𝐴 = [𝑎] ~Q0 )
2 elxpi 4679 . . . . . . 7 (𝑎 ∈ (ω × N) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)))
32anim1i 340 . . . . . 6 ((𝑎 ∈ (ω × N) ∧ 𝐴 = [𝑎] ~Q0 ) → (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ))
4 19.41vv 1918 . . . . . 6 (∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) ↔ (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ))
53, 4sylibr 134 . . . . 5 ((𝑎 ∈ (ω × N) ∧ 𝐴 = [𝑎] ~Q0 ) → ∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ))
6 simplr 528 . . . . . . 7 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → (𝑤 ∈ ω ∧ 𝑣N))
7 simpr 110 . . . . . . . 8 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → 𝐴 = [𝑎] ~Q0 )
8 eceq1 6627 . . . . . . . . 9 (𝑎 = ⟨𝑤, 𝑣⟩ → [𝑎] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 )
98ad2antrr 488 . . . . . . . 8 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → [𝑎] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 )
107, 9eqtrd 2229 . . . . . . 7 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 )
116, 10jca 306 . . . . . 6 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → ((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
12112eximi 1615 . . . . 5 (∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
135, 12syl 14 . . . 4 ((𝑎 ∈ (ω × N) ∧ 𝐴 = [𝑎] ~Q0 ) → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
1413rexlimiva 2609 . . 3 (∃𝑎 ∈ (ω × N)𝐴 = [𝑎] ~Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
151, 14syl 14 . 2 (𝐴 ∈ ((ω × N) / ~Q0 ) → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
16 df-nq0 7492 . 2 Q0 = ((ω × N) / ~Q0 )
1715, 16eleq2s 2291 1 (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  wrex 2476  cop 3625  ωcom 4626   × cxp 4661  [cec 6590   / cqs 6591  Ncnpi 7339   ~Q0 ceq0 7353  Q0cnq0 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-ec 6594  df-qs 6598  df-nq0 7492
This theorem is referenced by:  nqpnq0nq  7520  nq0m0r  7523  nq0a0  7524  nq02m  7532
  Copyright terms: Public domain W3C validator