ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0nn GIF version

Theorem nq0nn 7440
Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
Assertion
Ref Expression
nq0nn (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
Distinct variable group:   𝑣,𝐴,𝑤

Proof of Theorem nq0nn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elqsi 6586 . . 3 (𝐴 ∈ ((ω × N) / ~Q0 ) → ∃𝑎 ∈ (ω × N)𝐴 = [𝑎] ~Q0 )
2 elxpi 4642 . . . . . . 7 (𝑎 ∈ (ω × N) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)))
32anim1i 340 . . . . . 6 ((𝑎 ∈ (ω × N) ∧ 𝐴 = [𝑎] ~Q0 ) → (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ))
4 19.41vv 1903 . . . . . 6 (∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) ↔ (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ))
53, 4sylibr 134 . . . . 5 ((𝑎 ∈ (ω × N) ∧ 𝐴 = [𝑎] ~Q0 ) → ∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ))
6 simplr 528 . . . . . . 7 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → (𝑤 ∈ ω ∧ 𝑣N))
7 simpr 110 . . . . . . . 8 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → 𝐴 = [𝑎] ~Q0 )
8 eceq1 6569 . . . . . . . . 9 (𝑎 = ⟨𝑤, 𝑣⟩ → [𝑎] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 )
98ad2antrr 488 . . . . . . . 8 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → [𝑎] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 )
107, 9eqtrd 2210 . . . . . . 7 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 )
116, 10jca 306 . . . . . 6 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → ((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
12112eximi 1601 . . . . 5 (∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
135, 12syl 14 . . . 4 ((𝑎 ∈ (ω × N) ∧ 𝐴 = [𝑎] ~Q0 ) → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
1413rexlimiva 2589 . . 3 (∃𝑎 ∈ (ω × N)𝐴 = [𝑎] ~Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
151, 14syl 14 . 2 (𝐴 ∈ ((ω × N) / ~Q0 ) → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
16 df-nq0 7423 . 2 Q0 = ((ω × N) / ~Q0 )
1715, 16eleq2s 2272 1 (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1492  wcel 2148  wrex 2456  cop 3595  ωcom 4589   × cxp 4624  [cec 6532   / cqs 6533  Ncnpi 7270   ~Q0 ceq0 7284  Q0cnq0 7285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-xp 4632  df-cnv 4634  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-ec 6536  df-qs 6540  df-nq0 7423
This theorem is referenced by:  nqpnq0nq  7451  nq0m0r  7454  nq0a0  7455  nq02m  7463
  Copyright terms: Public domain W3C validator