| Step | Hyp | Ref
 | Expression | 
| 1 |   | elqsi 6646 | 
. . 3
⊢ (𝐴 ∈ ((ω ×
N) / ~Q0 ) → ∃𝑎 ∈ (ω ×
N)𝐴 = [𝑎] ~Q0
) | 
| 2 |   | elxpi 4679 | 
. . . . . . 7
⊢ (𝑎 ∈ (ω ×
N) → ∃𝑤∃𝑣(𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N))) | 
| 3 | 2 | anim1i 340 | 
. . . . . 6
⊢ ((𝑎 ∈ (ω ×
N) ∧ 𝐴 =
[𝑎]
~Q0 ) → (∃𝑤∃𝑣(𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N)) ∧ 𝐴 = [𝑎] ~Q0
)) | 
| 4 |   | 19.41vv 1918 | 
. . . . . 6
⊢
(∃𝑤∃𝑣((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N)) ∧ 𝐴 = [𝑎] ~Q0 ) ↔
(∃𝑤∃𝑣(𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N)) ∧ 𝐴 = [𝑎] ~Q0
)) | 
| 5 | 3, 4 | sylibr 134 | 
. . . . 5
⊢ ((𝑎 ∈ (ω ×
N) ∧ 𝐴 =
[𝑎]
~Q0 ) → ∃𝑤∃𝑣((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N)) ∧ 𝐴 = [𝑎] ~Q0
)) | 
| 6 |   | simplr 528 | 
. . . . . . 7
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N)) ∧ 𝐴 = [𝑎] ~Q0 ) →
(𝑤 ∈ ω ∧
𝑣 ∈
N)) | 
| 7 |   | simpr 110 | 
. . . . . . . 8
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N)) ∧ 𝐴 = [𝑎] ~Q0 ) → 𝐴 = [𝑎] ~Q0
) | 
| 8 |   | eceq1 6627 | 
. . . . . . . . 9
⊢ (𝑎 = 〈𝑤, 𝑣〉 → [𝑎] ~Q0 = [〈𝑤, 𝑣〉] ~Q0
) | 
| 9 | 8 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N)) ∧ 𝐴 = [𝑎] ~Q0 ) →
[𝑎]
~Q0 = [〈𝑤, 𝑣〉] ~Q0
) | 
| 10 | 7, 9 | eqtrd 2229 | 
. . . . . . 7
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N)) ∧ 𝐴 = [𝑎] ~Q0 ) → 𝐴 = [〈𝑤, 𝑣〉] ~Q0
) | 
| 11 | 6, 10 | jca 306 | 
. . . . . 6
⊢ (((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N)) ∧ 𝐴 = [𝑎] ~Q0 ) →
((𝑤 ∈ ω ∧
𝑣 ∈ N)
∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0
)) | 
| 12 | 11 | 2eximi 1615 | 
. . . . 5
⊢
(∃𝑤∃𝑣((𝑎 = 〈𝑤, 𝑣〉 ∧ (𝑤 ∈ ω ∧ 𝑣 ∈ N)) ∧ 𝐴 = [𝑎] ~Q0 ) →
∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0
)) | 
| 13 | 5, 12 | syl 14 | 
. . . 4
⊢ ((𝑎 ∈ (ω ×
N) ∧ 𝐴 =
[𝑎]
~Q0 ) → ∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0
)) | 
| 14 | 13 | rexlimiva 2609 | 
. . 3
⊢
(∃𝑎 ∈
(ω × N)𝐴 = [𝑎] ~Q0 →
∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0
)) | 
| 15 | 1, 14 | syl 14 | 
. 2
⊢ (𝐴 ∈ ((ω ×
N) / ~Q0 ) → ∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0
)) | 
| 16 |   | df-nq0 7492 | 
. 2
⊢
Q0 = ((ω × N)
/ ~Q0 ) | 
| 17 | 15, 16 | eleq2s 2291 | 
1
⊢ (𝐴 ∈
Q0 → ∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0
)) |