ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0nn GIF version

Theorem nq0nn 7383
Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
Assertion
Ref Expression
nq0nn (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
Distinct variable group:   𝑣,𝐴,𝑤

Proof of Theorem nq0nn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elqsi 6553 . . 3 (𝐴 ∈ ((ω × N) / ~Q0 ) → ∃𝑎 ∈ (ω × N)𝐴 = [𝑎] ~Q0 )
2 elxpi 4620 . . . . . . 7 (𝑎 ∈ (ω × N) → ∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)))
32anim1i 338 . . . . . 6 ((𝑎 ∈ (ω × N) ∧ 𝐴 = [𝑎] ~Q0 ) → (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ))
4 19.41vv 1891 . . . . . 6 (∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) ↔ (∃𝑤𝑣(𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ))
53, 4sylibr 133 . . . . 5 ((𝑎 ∈ (ω × N) ∧ 𝐴 = [𝑎] ~Q0 ) → ∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ))
6 simplr 520 . . . . . . 7 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → (𝑤 ∈ ω ∧ 𝑣N))
7 simpr 109 . . . . . . . 8 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → 𝐴 = [𝑎] ~Q0 )
8 eceq1 6536 . . . . . . . . 9 (𝑎 = ⟨𝑤, 𝑣⟩ → [𝑎] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 )
98ad2antrr 480 . . . . . . . 8 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → [𝑎] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 )
107, 9eqtrd 2198 . . . . . . 7 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 )
116, 10jca 304 . . . . . 6 (((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → ((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
12112eximi 1589 . . . . 5 (∃𝑤𝑣((𝑎 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ ω ∧ 𝑣N)) ∧ 𝐴 = [𝑎] ~Q0 ) → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
135, 12syl 14 . . . 4 ((𝑎 ∈ (ω × N) ∧ 𝐴 = [𝑎] ~Q0 ) → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
1413rexlimiva 2578 . . 3 (∃𝑎 ∈ (ω × N)𝐴 = [𝑎] ~Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
151, 14syl 14 . 2 (𝐴 ∈ ((ω × N) / ~Q0 ) → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
16 df-nq0 7366 . 2 Q0 = ((ω × N) / ~Q0 )
1715, 16eleq2s 2261 1 (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wex 1480  wcel 2136  wrex 2445  cop 3579  ωcom 4567   × cxp 4602  [cec 6499   / cqs 6500  Ncnpi 7213   ~Q0 ceq0 7227  Q0cnq0 7228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503  df-qs 6507  df-nq0 7366
This theorem is referenced by:  nqpnq0nq  7394  nq0m0r  7397  nq0a0  7398  nq02m  7406
  Copyright terms: Public domain W3C validator