ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomptx GIF version

Theorem mpomptx 5870
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpompt.1 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
mpomptx (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦   𝑧,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem mpomptx
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 3999 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)}
2 df-mpo 5787 . . 3 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)}
3 eliunxp 4686 . . . . . . 7 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
43anbi1i 454 . . . . . 6 ((𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
5 19.41vv 1876 . . . . . 6 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
6 anass 399 . . . . . . . 8 (((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
7 mpompt.1 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
87eqeq2d 2152 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑤 = 𝐶𝑤 = 𝐷))
98anbi2d 460 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
109pm5.32i 450 . . . . . . . 8 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
116, 10bitri 183 . . . . . . 7 (((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
12112exbii 1586 . . . . . 6 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
134, 5, 123bitr2i 207 . . . . 5 ((𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
1413opabbii 4003 . . . 4 {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷))}
15 dfoprab2 5826 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)} = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷))}
1614, 15eqtr4i 2164 . . 3 {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)}
172, 16eqtr4i 2164 . 2 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)}
181, 17eqtr4i 2164 1 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wex 1469  wcel 1481  {csn 3532  cop 3535   ciun 3821  {copab 3996  cmpt 3997   × cxp 4545  {coprab 5783  cmpo 5784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-iun 3823  df-opab 3998  df-mpt 3999  df-xp 4553  df-rel 4554  df-oprab 5786  df-mpo 5787
This theorem is referenced by:  mpompt  5871  mpomptsx  6103  dmmpossx  6105  fmpox  6106
  Copyright terms: Public domain W3C validator