ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabxp GIF version

Theorem rabxp 4544
Description: Membership in a class builder restricted to a cross product. (Contributed by NM, 20-Feb-2014.)
Hypothesis
Ref Expression
rabxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
rabxp {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem rabxp
StepHypRef Expression
1 elxp 4524 . . . . 5 (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
21anbi1i 451 . . . 4 ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
3 19.41vv 1857 . . . 4 (∃𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
4 anass 396 . . . . . 6 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)))
5 rabxp.1 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
65anbi2d 457 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) ∧ 𝜑) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓)))
7 df-3an 947 . . . . . . . 8 ((𝑦𝐴𝑧𝐵𝜓) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓))
86, 7syl6bbr 197 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) ∧ 𝜑) ↔ (𝑦𝐴𝑧𝐵𝜓)))
98pm5.32i 447 . . . . . 6 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
104, 9bitri 183 . . . . 5 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
11102exbii 1568 . . . 4 (∃𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
122, 3, 113bitr2i 207 . . 3 ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
1312abbii 2231 . 2 {𝑥 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {𝑥 ∣ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓))}
14 df-rab 2400 . 2 {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑)}
15 df-opab 3958 . 2 {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)} = {𝑥 ∣ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓))}
1613, 14, 153eqtr4i 2146 1 {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wex 1451  wcel 1463  {cab 2101  {crab 2395  cop 3498  {copab 3956   × cxp 4505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-rab 2400  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-opab 3958  df-xp 4513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator