| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2euex | GIF version | ||
| Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| 2euex | ⊢ (∃!𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu5 2092 | . 2 ⊢ (∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑)) | |
| 2 | excom 1678 | . . . 4 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | |
| 3 | hbe1 1509 | . . . . . 6 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
| 4 | 3 | hbmo 2084 | . . . . 5 ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥∃𝑦𝜑) |
| 5 | 19.8a 1604 | . . . . . . 7 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 6 | 5 | moimi 2110 | . . . . . 6 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥𝜑) |
| 7 | df-mo 2049 | . . . . . 6 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 8 | 6, 7 | sylib 122 | . . . . 5 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 9 | 4, 8 | eximdh 1625 | . . . 4 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑦∃𝑥𝜑 → ∃𝑦∃!𝑥𝜑)) |
| 10 | 2, 9 | biimtrid 152 | . . 3 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑)) |
| 11 | 10 | impcom 125 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) → ∃𝑦∃!𝑥𝜑) |
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (∃!𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |