ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euex GIF version

Theorem 2euex 2101
Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
2euex (∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)

Proof of Theorem 2euex
StepHypRef Expression
1 eu5 2061 . 2 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
2 excom 1652 . . . 4 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
3 hbe1 1483 . . . . . 6 (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
43hbmo 2053 . . . . 5 (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝑦𝜑)
5 19.8a 1578 . . . . . . 7 (𝜑 → ∃𝑦𝜑)
65moimi 2079 . . . . . 6 (∃*𝑥𝑦𝜑 → ∃*𝑥𝜑)
7 df-mo 2018 . . . . . 6 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
86, 7sylib 121 . . . . 5 (∃*𝑥𝑦𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
94, 8eximdh 1599 . . . 4 (∃*𝑥𝑦𝜑 → (∃𝑦𝑥𝜑 → ∃𝑦∃!𝑥𝜑))
102, 9syl5bi 151 . . 3 (∃*𝑥𝑦𝜑 → (∃𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑))
1110impcom 124 . 2 ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → ∃𝑦∃!𝑥𝜑)
121, 11sylbi 120 1 (∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1480  ∃!weu 2014  ∃*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator