Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2euex | GIF version |
Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
2euex | ⊢ (∃!𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2066 | . 2 ⊢ (∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑)) | |
2 | excom 1657 | . . . 4 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | |
3 | hbe1 1488 | . . . . . 6 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
4 | 3 | hbmo 2058 | . . . . 5 ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥∃𝑦𝜑) |
5 | 19.8a 1583 | . . . . . . 7 ⊢ (𝜑 → ∃𝑦𝜑) | |
6 | 5 | moimi 2084 | . . . . . 6 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥𝜑) |
7 | df-mo 2023 | . . . . . 6 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
8 | 6, 7 | sylib 121 | . . . . 5 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
9 | 4, 8 | eximdh 1604 | . . . 4 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑦∃𝑥𝜑 → ∃𝑦∃!𝑥𝜑)) |
10 | 2, 9 | syl5bi 151 | . . 3 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑)) |
11 | 10 | impcom 124 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) → ∃𝑦∃!𝑥𝜑) |
12 | 1, 11 | sylbi 120 | 1 ⊢ (∃!𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 ∃!weu 2019 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |