ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euex GIF version

Theorem 2euex 2129
Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
2euex (∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)

Proof of Theorem 2euex
StepHypRef Expression
1 eu5 2089 . 2 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
2 excom 1675 . . . 4 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
3 hbe1 1506 . . . . . 6 (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
43hbmo 2081 . . . . 5 (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝑦𝜑)
5 19.8a 1601 . . . . . . 7 (𝜑 → ∃𝑦𝜑)
65moimi 2107 . . . . . 6 (∃*𝑥𝑦𝜑 → ∃*𝑥𝜑)
7 df-mo 2046 . . . . . 6 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
86, 7sylib 122 . . . . 5 (∃*𝑥𝑦𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
94, 8eximdh 1622 . . . 4 (∃*𝑥𝑦𝜑 → (∃𝑦𝑥𝜑 → ∃𝑦∃!𝑥𝜑))
102, 9biimtrid 152 . . 3 (∃*𝑥𝑦𝜑 → (∃𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑))
1110impcom 125 . 2 ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → ∃𝑦∃!𝑥𝜑)
121, 11sylbi 121 1 (∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  ∃!weu 2042  ∃*wmo 2043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator