ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbidva GIF version

Theorem 2ralbidva 2400
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.)
Hypothesis
Ref Expression
2ralbidva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
2ralbidva (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem 2ralbidva
StepHypRef Expression
1 nfv 1466 . 2 𝑥𝜑
2 nfv 1466 . 2 𝑦𝜑
3 2ralbidva.1 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
41, 2, 32ralbida 2399 1 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1438  wral 2359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-4 1445  ax-17 1464
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-ral 2364
This theorem is referenced by:  soinxp  4496  isotr  5577
  Copyright terms: Public domain W3C validator