ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmpropd GIF version

Theorem mhmpropd 13485
Description: Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.)
Hypotheses
Ref Expression
mhmpropd.a (𝜑𝐵 = (Base‘𝐽))
mhmpropd.b (𝜑𝐶 = (Base‘𝐾))
mhmpropd.c (𝜑𝐵 = (Base‘𝐿))
mhmpropd.d (𝜑𝐶 = (Base‘𝑀))
mhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
mhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
Assertion
Ref Expression
mhmpropd (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐽,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥,𝑀,𝑦

Proof of Theorem mhmpropd
Dummy variables 𝑤 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmpropd.e . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
21fveq2d 5627 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑓‘(𝑥(+g𝐽)𝑦)) = (𝑓‘(𝑥(+g𝐿)𝑦)))
32adantlr 477 . . . . . . . . . . . . . 14 (((𝜑𝑓:𝐵𝐶) ∧ (𝑥𝐵𝑦𝐵)) → (𝑓‘(𝑥(+g𝐽)𝑦)) = (𝑓‘(𝑥(+g𝐿)𝑦)))
4 ffvelcdm 5761 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐵𝐶𝑥𝐵) → (𝑓𝑥) ∈ 𝐶)
5 ffvelcdm 5761 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐵𝐶𝑦𝐵) → (𝑓𝑦) ∈ 𝐶)
64, 5anim12dan 602 . . . . . . . . . . . . . . . 16 ((𝑓:𝐵𝐶 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓𝑥) ∈ 𝐶 ∧ (𝑓𝑦) ∈ 𝐶))
7 mhmpropd.f . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
87ralrimivva 2612 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐶𝑦𝐶 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
9 oveq1 6001 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑥(+g𝐾)𝑦) = (𝑤(+g𝐾)𝑦))
10 oveq1 6001 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑥(+g𝑀)𝑦) = (𝑤(+g𝑀)𝑦))
119, 10eqeq12d 2244 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → ((𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦) ↔ (𝑤(+g𝐾)𝑦) = (𝑤(+g𝑀)𝑦)))
12 oveq2 6002 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝑤(+g𝐾)𝑦) = (𝑤(+g𝐾)𝑧))
13 oveq2 6002 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝑤(+g𝑀)𝑦) = (𝑤(+g𝑀)𝑧))
1412, 13eqeq12d 2244 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((𝑤(+g𝐾)𝑦) = (𝑤(+g𝑀)𝑦) ↔ (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧)))
1511, 14cbvral2vw 2776 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐶𝑦𝐶 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦) ↔ ∀𝑤𝐶𝑧𝐶 (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧))
168, 15sylib 122 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑤𝐶𝑧𝐶 (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧))
17 oveq1 6001 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑓𝑥) → (𝑤(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝐾)𝑧))
18 oveq1 6001 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑓𝑥) → (𝑤(+g𝑀)𝑧) = ((𝑓𝑥)(+g𝑀)𝑧))
1917, 18eqeq12d 2244 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑓𝑥) → ((𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧) ↔ ((𝑓𝑥)(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝑀)𝑧)))
20 oveq2 6002 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑦) → ((𝑓𝑥)(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)))
21 oveq2 6002 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑦) → ((𝑓𝑥)(+g𝑀)𝑧) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
2220, 21eqeq12d 2244 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑦) → (((𝑓𝑥)(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝑀)𝑧) ↔ ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
2319, 22rspc2va 2921 . . . . . . . . . . . . . . . 16 ((((𝑓𝑥) ∈ 𝐶 ∧ (𝑓𝑦) ∈ 𝐶) ∧ ∀𝑤𝐶𝑧𝐶 (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧)) → ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
246, 16, 23syl2anr 290 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓:𝐵𝐶 ∧ (𝑥𝐵𝑦𝐵))) → ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
2524anassrs 400 . . . . . . . . . . . . . 14 (((𝜑𝑓:𝐵𝐶) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
263, 25eqeq12d 2244 . . . . . . . . . . . . 13 (((𝜑𝑓:𝐵𝐶) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
27262ralbidva 2552 . . . . . . . . . . . 12 ((𝜑𝑓:𝐵𝐶) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
2827adantrl 478 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
29 mhmpropd.a . . . . . . . . . . . . 13 (𝜑𝐵 = (Base‘𝐽))
30 raleq 2728 . . . . . . . . . . . . . 14 (𝐵 = (Base‘𝐽) → (∀𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
3130raleqbi1dv 2740 . . . . . . . . . . . . 13 (𝐵 = (Base‘𝐽) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
3229, 31syl 14 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
3332adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
34 mhmpropd.c . . . . . . . . . . . . 13 (𝜑𝐵 = (Base‘𝐿))
35 raleq 2728 . . . . . . . . . . . . . 14 (𝐵 = (Base‘𝐿) → (∀𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3635raleqbi1dv 2740 . . . . . . . . . . . . 13 (𝐵 = (Base‘𝐿) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3734, 36syl 14 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3837adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3928, 33, 383bitr3d 218 . . . . . . . . . 10 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
4029adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐵 = (Base‘𝐽))
4134adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐵 = (Base‘𝐿))
42 simprll 537 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐽 ∈ Mnd)
4329, 34, 1mndpropd 13459 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 ∈ Mnd ↔ 𝐿 ∈ Mnd))
4443adantr 276 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (𝐽 ∈ Mnd ↔ 𝐿 ∈ Mnd))
4542, 44mpbid 147 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐿 ∈ Mnd)
461adantlr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
4740, 41, 42, 45, 46grpidpropdg 13393 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (0g𝐽) = (0g𝐿))
4847fveq2d 5627 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (𝑓‘(0g𝐽)) = (𝑓‘(0g𝐿)))
49 mhmpropd.b . . . . . . . . . . . . 13 (𝜑𝐶 = (Base‘𝐾))
5049adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐶 = (Base‘𝐾))
51 mhmpropd.d . . . . . . . . . . . . 13 (𝜑𝐶 = (Base‘𝑀))
5251adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐶 = (Base‘𝑀))
53 simprlr 538 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐾 ∈ Mnd)
5449, 51, 7mndpropd 13459 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 ∈ Mnd ↔ 𝑀 ∈ Mnd))
5554adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (𝐾 ∈ Mnd ↔ 𝑀 ∈ Mnd))
5653, 55mpbid 147 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝑀 ∈ Mnd)
577adantlr 477 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
5850, 52, 53, 56, 57grpidpropdg 13393 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (0g𝐾) = (0g𝑀))
5948, 58eqeq12d 2244 . . . . . . . . . 10 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → ((𝑓‘(0g𝐽)) = (0g𝐾) ↔ (𝑓‘(0g𝐿)) = (0g𝑀)))
6039, 59anbi12d 473 . . . . . . . . 9 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → ((∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾)) ↔ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))))
6160anassrs 400 . . . . . . . 8 (((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) ∧ 𝑓:𝐵𝐶) → ((∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾)) ↔ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))))
6261pm5.32da 452 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵𝐶 ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))) ↔ (𝑓:𝐵𝐶 ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
6329, 49feq23d 5465 . . . . . . . . 9 (𝜑 → (𝑓:𝐵𝐶𝑓:(Base‘𝐽)⟶(Base‘𝐾)))
6463adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → (𝑓:𝐵𝐶𝑓:(Base‘𝐽)⟶(Base‘𝐾)))
6564anbi1d 465 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵𝐶 ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))) ↔ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾)))))
6634, 51feq23d 5465 . . . . . . . . 9 (𝜑 → (𝑓:𝐵𝐶𝑓:(Base‘𝐿)⟶(Base‘𝑀)))
6766adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → (𝑓:𝐵𝐶𝑓:(Base‘𝐿)⟶(Base‘𝑀)))
6867anbi1d 465 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵𝐶 ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
6962, 65, 683bitr3d 218 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
70 3anass 1006 . . . . . 6 ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾)) ↔ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))))
71 3anass 1006 . . . . . 6 ((𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))))
7269, 70, 713bitr4g 223 . . . . 5 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾)) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))))
7372pm5.32da 452 . . . 4 (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))) ↔ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
7443, 54anbi12d 473 . . . . 5 (𝜑 → ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ↔ (𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd)))
7574anbi1d 465 . . . 4 (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
7673, 75bitrd 188 . . 3 (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
77 eqid 2229 . . . 4 (Base‘𝐽) = (Base‘𝐽)
78 eqid 2229 . . . 4 (Base‘𝐾) = (Base‘𝐾)
79 eqid 2229 . . . 4 (+g𝐽) = (+g𝐽)
80 eqid 2229 . . . 4 (+g𝐾) = (+g𝐾)
81 eqid 2229 . . . 4 (0g𝐽) = (0g𝐽)
82 eqid 2229 . . . 4 (0g𝐾) = (0g𝐾)
8377, 78, 79, 80, 81, 82ismhm 13480 . . 3 (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))))
84 eqid 2229 . . . 4 (Base‘𝐿) = (Base‘𝐿)
85 eqid 2229 . . . 4 (Base‘𝑀) = (Base‘𝑀)
86 eqid 2229 . . . 4 (+g𝐿) = (+g𝐿)
87 eqid 2229 . . . 4 (+g𝑀) = (+g𝑀)
88 eqid 2229 . . . 4 (0g𝐿) = (0g𝐿)
89 eqid 2229 . . . 4 (0g𝑀) = (0g𝑀)
9084, 85, 86, 87, 88, 89ismhm 13480 . . 3 (𝑓 ∈ (𝐿 MndHom 𝑀) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))))
9176, 83, 903bitr4g 223 . 2 (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
9291eqrdv 2227 1 (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wf 5310  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  0gc0g 13275  Mndcmnd 13435   MndHom cmhm 13476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-map 6787  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-mhm 13478
This theorem is referenced by:  ghmpropd  13806  rhmpropd  14203
  Copyright terms: Public domain W3C validator