| Step | Hyp | Ref
 | Expression | 
| 1 |   | mhmpropd.e | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) | 
| 2 | 1 | fveq2d 5562 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑓‘(𝑥(+g‘𝐽)𝑦)) = (𝑓‘(𝑥(+g‘𝐿)𝑦))) | 
| 3 | 2 | adantlr 477 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓:𝐵⟶𝐶) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑓‘(𝑥(+g‘𝐽)𝑦)) = (𝑓‘(𝑥(+g‘𝐿)𝑦))) | 
| 4 |   | ffvelcdm 5695 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐵⟶𝐶 ∧ 𝑥 ∈ 𝐵) → (𝑓‘𝑥) ∈ 𝐶) | 
| 5 |   | ffvelcdm 5695 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐵⟶𝐶 ∧ 𝑦 ∈ 𝐵) → (𝑓‘𝑦) ∈ 𝐶) | 
| 6 | 4, 5 | anim12dan 600 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝐵⟶𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑓‘𝑥) ∈ 𝐶 ∧ (𝑓‘𝑦) ∈ 𝐶)) | 
| 7 |   | mhmpropd.f | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) | 
| 8 | 7 | ralrimivva 2579 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) | 
| 9 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝑥(+g‘𝐾)𝑦) = (𝑤(+g‘𝐾)𝑦)) | 
| 10 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝑥(+g‘𝑀)𝑦) = (𝑤(+g‘𝑀)𝑦)) | 
| 11 | 9, 10 | eqeq12d 2211 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑤 → ((𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦) ↔ (𝑤(+g‘𝐾)𝑦) = (𝑤(+g‘𝑀)𝑦))) | 
| 12 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (𝑤(+g‘𝐾)𝑦) = (𝑤(+g‘𝐾)𝑧)) | 
| 13 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (𝑤(+g‘𝑀)𝑦) = (𝑤(+g‘𝑀)𝑧)) | 
| 14 | 12, 13 | eqeq12d 2211 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → ((𝑤(+g‘𝐾)𝑦) = (𝑤(+g‘𝑀)𝑦) ↔ (𝑤(+g‘𝐾)𝑧) = (𝑤(+g‘𝑀)𝑧))) | 
| 15 | 11, 14 | cbvral2vw 2740 | 
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐶 ∀𝑦 ∈ 𝐶 (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦) ↔ ∀𝑤 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑤(+g‘𝐾)𝑧) = (𝑤(+g‘𝑀)𝑧)) | 
| 16 | 8, 15 | sylib 122 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑤 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑤(+g‘𝐾)𝑧) = (𝑤(+g‘𝑀)𝑧)) | 
| 17 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑓‘𝑥) → (𝑤(+g‘𝐾)𝑧) = ((𝑓‘𝑥)(+g‘𝐾)𝑧)) | 
| 18 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑓‘𝑥) → (𝑤(+g‘𝑀)𝑧) = ((𝑓‘𝑥)(+g‘𝑀)𝑧)) | 
| 19 | 17, 18 | eqeq12d 2211 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝑓‘𝑥) → ((𝑤(+g‘𝐾)𝑧) = (𝑤(+g‘𝑀)𝑧) ↔ ((𝑓‘𝑥)(+g‘𝐾)𝑧) = ((𝑓‘𝑥)(+g‘𝑀)𝑧))) | 
| 20 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑓‘𝑦) → ((𝑓‘𝑥)(+g‘𝐾)𝑧) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦))) | 
| 21 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑓‘𝑦) → ((𝑓‘𝑥)(+g‘𝑀)𝑧) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦))) | 
| 22 | 20, 21 | eqeq12d 2211 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑓‘𝑦) → (((𝑓‘𝑥)(+g‘𝐾)𝑧) = ((𝑓‘𝑥)(+g‘𝑀)𝑧) ↔ ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) | 
| 23 | 19, 22 | rspc2va 2882 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓‘𝑥) ∈ 𝐶 ∧ (𝑓‘𝑦) ∈ 𝐶) ∧ ∀𝑤 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑤(+g‘𝐾)𝑧) = (𝑤(+g‘𝑀)𝑧)) → ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦))) | 
| 24 | 6, 16, 23 | syl2anr 290 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓:𝐵⟶𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦))) | 
| 25 | 24 | anassrs 400 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓:𝐵⟶𝐶) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦))) | 
| 26 | 3, 25 | eqeq12d 2211 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓:𝐵⟶𝐶) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) | 
| 27 | 26 | 2ralbidva 2519 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓:𝐵⟶𝐶) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) | 
| 28 | 27 | adantrl 478 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) | 
| 29 |   | mhmpropd.a | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) | 
| 30 |   | raleq 2693 | 
. . . . . . . . . . . . . 14
⊢ (𝐵 = (Base‘𝐽) → (∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)))) | 
| 31 | 30 | raleqbi1dv 2705 | 
. . . . . . . . . . . . 13
⊢ (𝐵 = (Base‘𝐽) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)))) | 
| 32 | 29, 31 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)))) | 
| 33 | 32 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)))) | 
| 34 |   | mhmpropd.c | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | 
| 35 |   | raleq 2693 | 
. . . . . . . . . . . . . 14
⊢ (𝐵 = (Base‘𝐿) → (∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) | 
| 36 | 35 | raleqbi1dv 2705 | 
. . . . . . . . . . . . 13
⊢ (𝐵 = (Base‘𝐿) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) | 
| 37 | 34, 36 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) | 
| 38 | 37 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) | 
| 39 | 28, 33, 38 | 3bitr3d 218 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) | 
| 40 | 29 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐵 = (Base‘𝐽)) | 
| 41 | 34 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐵 = (Base‘𝐿)) | 
| 42 |   | simprll 537 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐽 ∈ Mnd) | 
| 43 | 29, 34, 1 | mndpropd 13081 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐽 ∈ Mnd ↔ 𝐿 ∈ Mnd)) | 
| 44 | 43 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (𝐽 ∈ Mnd ↔ 𝐿 ∈ Mnd)) | 
| 45 | 42, 44 | mpbid 147 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐿 ∈ Mnd) | 
| 46 | 1 | adantlr 477 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) | 
| 47 | 40, 41, 42, 45, 46 | grpidpropdg 13017 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (0g‘𝐽) = (0g‘𝐿)) | 
| 48 | 47 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (𝑓‘(0g‘𝐽)) = (𝑓‘(0g‘𝐿))) | 
| 49 |   | mhmpropd.b | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 = (Base‘𝐾)) | 
| 50 | 49 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐶 = (Base‘𝐾)) | 
| 51 |   | mhmpropd.d | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 = (Base‘𝑀)) | 
| 52 | 51 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐶 = (Base‘𝑀)) | 
| 53 |   | simprlr 538 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐾 ∈ Mnd) | 
| 54 | 49, 51, 7 | mndpropd 13081 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝑀 ∈ Mnd)) | 
| 55 | 54 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (𝐾 ∈ Mnd ↔ 𝑀 ∈ Mnd)) | 
| 56 | 53, 55 | mpbid 147 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝑀 ∈ Mnd) | 
| 57 | 7 | adantlr 477 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) | 
| 58 | 50, 52, 53, 56, 57 | grpidpropdg 13017 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (0g‘𝐾) = (0g‘𝑀)) | 
| 59 | 48, 58 | eqeq12d 2211 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → ((𝑓‘(0g‘𝐽)) = (0g‘𝐾) ↔ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))) | 
| 60 | 39, 59 | anbi12d 473 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → ((∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)) ↔ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)))) | 
| 61 | 60 | anassrs 400 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) ∧ 𝑓:𝐵⟶𝐶) → ((∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)) ↔ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)))) | 
| 62 | 61 | pm5.32da 452 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵⟶𝐶 ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))) ↔ (𝑓:𝐵⟶𝐶 ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) | 
| 63 | 29, 49 | feq23d 5403 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑓:𝐵⟶𝐶 ↔ 𝑓:(Base‘𝐽)⟶(Base‘𝐾))) | 
| 64 | 63 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → (𝑓:𝐵⟶𝐶 ↔ 𝑓:(Base‘𝐽)⟶(Base‘𝐾))) | 
| 65 | 64 | anbi1d 465 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵⟶𝐶 ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))) ↔ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))))) | 
| 66 | 34, 51 | feq23d 5403 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑓:𝐵⟶𝐶 ↔ 𝑓:(Base‘𝐿)⟶(Base‘𝑀))) | 
| 67 | 66 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → (𝑓:𝐵⟶𝐶 ↔ 𝑓:(Base‘𝐿)⟶(Base‘𝑀))) | 
| 68 | 67 | anbi1d 465 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵⟶𝐶 ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) | 
| 69 | 62, 65, 68 | 3bitr3d 218 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) | 
| 70 |   | 3anass 984 | 
. . . . . 6
⊢ ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)) ↔ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)))) | 
| 71 |   | 3anass 984 | 
. . . . . 6
⊢ ((𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)))) | 
| 72 | 69, 70, 71 | 3bitr4g 223 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)))) | 
| 73 | 72 | pm5.32da 452 | 
. . . 4
⊢ (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))) ↔ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) | 
| 74 | 43, 54 | anbi12d 473 | 
. . . . 5
⊢ (𝜑 → ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ↔ (𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd))) | 
| 75 | 74 | anbi1d 465 | 
. . . 4
⊢ (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) | 
| 76 | 73, 75 | bitrd 188 | 
. . 3
⊢ (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) | 
| 77 |   | eqid 2196 | 
. . . 4
⊢
(Base‘𝐽) =
(Base‘𝐽) | 
| 78 |   | eqid 2196 | 
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 79 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝐽) = (+g‘𝐽) | 
| 80 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝐾) = (+g‘𝐾) | 
| 81 |   | eqid 2196 | 
. . . 4
⊢
(0g‘𝐽) = (0g‘𝐽) | 
| 82 |   | eqid 2196 | 
. . . 4
⊢
(0g‘𝐾) = (0g‘𝐾) | 
| 83 | 77, 78, 79, 80, 81, 82 | ismhm 13093 | 
. . 3
⊢ (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)))) | 
| 84 |   | eqid 2196 | 
. . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 85 |   | eqid 2196 | 
. . . 4
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 86 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝐿) = (+g‘𝐿) | 
| 87 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝑀) = (+g‘𝑀) | 
| 88 |   | eqid 2196 | 
. . . 4
⊢
(0g‘𝐿) = (0g‘𝐿) | 
| 89 |   | eqid 2196 | 
. . . 4
⊢
(0g‘𝑀) = (0g‘𝑀) | 
| 90 | 84, 85, 86, 87, 88, 89 | ismhm 13093 | 
. . 3
⊢ (𝑓 ∈ (𝐿 MndHom 𝑀) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)))) | 
| 91 | 76, 83, 90 | 3bitr4g 223 | 
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀))) | 
| 92 | 91 | eqrdv 2194 | 
1
⊢ (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀)) |