ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmpropd GIF version

Theorem mhmpropd 13348
Description: Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.)
Hypotheses
Ref Expression
mhmpropd.a (𝜑𝐵 = (Base‘𝐽))
mhmpropd.b (𝜑𝐶 = (Base‘𝐾))
mhmpropd.c (𝜑𝐵 = (Base‘𝐿))
mhmpropd.d (𝜑𝐶 = (Base‘𝑀))
mhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
mhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
Assertion
Ref Expression
mhmpropd (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐽,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥,𝑀,𝑦

Proof of Theorem mhmpropd
Dummy variables 𝑤 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmpropd.e . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
21fveq2d 5590 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑓‘(𝑥(+g𝐽)𝑦)) = (𝑓‘(𝑥(+g𝐿)𝑦)))
32adantlr 477 . . . . . . . . . . . . . 14 (((𝜑𝑓:𝐵𝐶) ∧ (𝑥𝐵𝑦𝐵)) → (𝑓‘(𝑥(+g𝐽)𝑦)) = (𝑓‘(𝑥(+g𝐿)𝑦)))
4 ffvelcdm 5723 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐵𝐶𝑥𝐵) → (𝑓𝑥) ∈ 𝐶)
5 ffvelcdm 5723 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐵𝐶𝑦𝐵) → (𝑓𝑦) ∈ 𝐶)
64, 5anim12dan 600 . . . . . . . . . . . . . . . 16 ((𝑓:𝐵𝐶 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓𝑥) ∈ 𝐶 ∧ (𝑓𝑦) ∈ 𝐶))
7 mhmpropd.f . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
87ralrimivva 2589 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐶𝑦𝐶 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
9 oveq1 5961 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑥(+g𝐾)𝑦) = (𝑤(+g𝐾)𝑦))
10 oveq1 5961 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑥(+g𝑀)𝑦) = (𝑤(+g𝑀)𝑦))
119, 10eqeq12d 2221 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → ((𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦) ↔ (𝑤(+g𝐾)𝑦) = (𝑤(+g𝑀)𝑦)))
12 oveq2 5962 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝑤(+g𝐾)𝑦) = (𝑤(+g𝐾)𝑧))
13 oveq2 5962 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝑤(+g𝑀)𝑦) = (𝑤(+g𝑀)𝑧))
1412, 13eqeq12d 2221 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((𝑤(+g𝐾)𝑦) = (𝑤(+g𝑀)𝑦) ↔ (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧)))
1511, 14cbvral2vw 2750 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐶𝑦𝐶 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦) ↔ ∀𝑤𝐶𝑧𝐶 (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧))
168, 15sylib 122 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑤𝐶𝑧𝐶 (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧))
17 oveq1 5961 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑓𝑥) → (𝑤(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝐾)𝑧))
18 oveq1 5961 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑓𝑥) → (𝑤(+g𝑀)𝑧) = ((𝑓𝑥)(+g𝑀)𝑧))
1917, 18eqeq12d 2221 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑓𝑥) → ((𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧) ↔ ((𝑓𝑥)(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝑀)𝑧)))
20 oveq2 5962 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑦) → ((𝑓𝑥)(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)))
21 oveq2 5962 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑦) → ((𝑓𝑥)(+g𝑀)𝑧) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
2220, 21eqeq12d 2221 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑦) → (((𝑓𝑥)(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝑀)𝑧) ↔ ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
2319, 22rspc2va 2893 . . . . . . . . . . . . . . . 16 ((((𝑓𝑥) ∈ 𝐶 ∧ (𝑓𝑦) ∈ 𝐶) ∧ ∀𝑤𝐶𝑧𝐶 (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧)) → ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
246, 16, 23syl2anr 290 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓:𝐵𝐶 ∧ (𝑥𝐵𝑦𝐵))) → ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
2524anassrs 400 . . . . . . . . . . . . . 14 (((𝜑𝑓:𝐵𝐶) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
263, 25eqeq12d 2221 . . . . . . . . . . . . 13 (((𝜑𝑓:𝐵𝐶) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
27262ralbidva 2529 . . . . . . . . . . . 12 ((𝜑𝑓:𝐵𝐶) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
2827adantrl 478 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
29 mhmpropd.a . . . . . . . . . . . . 13 (𝜑𝐵 = (Base‘𝐽))
30 raleq 2703 . . . . . . . . . . . . . 14 (𝐵 = (Base‘𝐽) → (∀𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
3130raleqbi1dv 2715 . . . . . . . . . . . . 13 (𝐵 = (Base‘𝐽) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
3229, 31syl 14 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
3332adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
34 mhmpropd.c . . . . . . . . . . . . 13 (𝜑𝐵 = (Base‘𝐿))
35 raleq 2703 . . . . . . . . . . . . . 14 (𝐵 = (Base‘𝐿) → (∀𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3635raleqbi1dv 2715 . . . . . . . . . . . . 13 (𝐵 = (Base‘𝐿) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3734, 36syl 14 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3837adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3928, 33, 383bitr3d 218 . . . . . . . . . 10 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
4029adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐵 = (Base‘𝐽))
4134adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐵 = (Base‘𝐿))
42 simprll 537 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐽 ∈ Mnd)
4329, 34, 1mndpropd 13322 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 ∈ Mnd ↔ 𝐿 ∈ Mnd))
4443adantr 276 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (𝐽 ∈ Mnd ↔ 𝐿 ∈ Mnd))
4542, 44mpbid 147 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐿 ∈ Mnd)
461adantlr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
4740, 41, 42, 45, 46grpidpropdg 13256 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (0g𝐽) = (0g𝐿))
4847fveq2d 5590 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (𝑓‘(0g𝐽)) = (𝑓‘(0g𝐿)))
49 mhmpropd.b . . . . . . . . . . . . 13 (𝜑𝐶 = (Base‘𝐾))
5049adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐶 = (Base‘𝐾))
51 mhmpropd.d . . . . . . . . . . . . 13 (𝜑𝐶 = (Base‘𝑀))
5251adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐶 = (Base‘𝑀))
53 simprlr 538 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝐾 ∈ Mnd)
5449, 51, 7mndpropd 13322 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 ∈ Mnd ↔ 𝑀 ∈ Mnd))
5554adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (𝐾 ∈ Mnd ↔ 𝑀 ∈ Mnd))
5653, 55mpbid 147 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → 𝑀 ∈ Mnd)
577adantlr 477 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
5850, 52, 53, 56, 57grpidpropdg 13256 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → (0g𝐾) = (0g𝑀))
5948, 58eqeq12d 2221 . . . . . . . . . 10 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → ((𝑓‘(0g𝐽)) = (0g𝐾) ↔ (𝑓‘(0g𝐿)) = (0g𝑀)))
6039, 59anbi12d 473 . . . . . . . . 9 ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵𝐶)) → ((∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾)) ↔ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))))
6160anassrs 400 . . . . . . . 8 (((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) ∧ 𝑓:𝐵𝐶) → ((∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾)) ↔ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))))
6261pm5.32da 452 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵𝐶 ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))) ↔ (𝑓:𝐵𝐶 ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
6329, 49feq23d 5428 . . . . . . . . 9 (𝜑 → (𝑓:𝐵𝐶𝑓:(Base‘𝐽)⟶(Base‘𝐾)))
6463adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → (𝑓:𝐵𝐶𝑓:(Base‘𝐽)⟶(Base‘𝐾)))
6564anbi1d 465 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵𝐶 ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))) ↔ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾)))))
6634, 51feq23d 5428 . . . . . . . . 9 (𝜑 → (𝑓:𝐵𝐶𝑓:(Base‘𝐿)⟶(Base‘𝑀)))
6766adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → (𝑓:𝐵𝐶𝑓:(Base‘𝐿)⟶(Base‘𝑀)))
6867anbi1d 465 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵𝐶 ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
6962, 65, 683bitr3d 218 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
70 3anass 985 . . . . . 6 ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾)) ↔ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))))
71 3anass 985 . . . . . 6 ((𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))))
7269, 70, 713bitr4g 223 . . . . 5 ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾)) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))))
7372pm5.32da 452 . . . 4 (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))) ↔ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
7443, 54anbi12d 473 . . . . 5 (𝜑 → ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ↔ (𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd)))
7574anbi1d 465 . . . 4 (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
7673, 75bitrd 188 . . 3 (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀)))))
77 eqid 2206 . . . 4 (Base‘𝐽) = (Base‘𝐽)
78 eqid 2206 . . . 4 (Base‘𝐾) = (Base‘𝐾)
79 eqid 2206 . . . 4 (+g𝐽) = (+g𝐽)
80 eqid 2206 . . . 4 (+g𝐾) = (+g𝐾)
81 eqid 2206 . . . 4 (0g𝐽) = (0g𝐽)
82 eqid 2206 . . . 4 (0g𝐾) = (0g𝐾)
8377, 78, 79, 80, 81, 82ismhm 13343 . . 3 (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ∧ (𝑓‘(0g𝐽)) = (0g𝐾))))
84 eqid 2206 . . . 4 (Base‘𝐿) = (Base‘𝐿)
85 eqid 2206 . . . 4 (Base‘𝑀) = (Base‘𝑀)
86 eqid 2206 . . . 4 (+g𝐿) = (+g𝐿)
87 eqid 2206 . . . 4 (+g𝑀) = (+g𝑀)
88 eqid 2206 . . . 4 (0g𝐿) = (0g𝐿)
89 eqid 2206 . . . 4 (0g𝑀) = (0g𝑀)
9084, 85, 86, 87, 88, 89ismhm 13343 . . 3 (𝑓 ∈ (𝐿 MndHom 𝑀) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ∧ (𝑓‘(0g𝐿)) = (0g𝑀))))
9176, 83, 903bitr4g 223 . 2 (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀)))
9291eqrdv 2204 1 (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wral 2485  wf 5273  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  0gc0g 13138  Mndcmnd 13298   MndHom cmhm 13339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-map 6747  df-inn 9050  df-2 9108  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-mhm 13341
This theorem is referenced by:  ghmpropd  13669  rhmpropd  14066
  Copyright terms: Public domain W3C validator