ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpoovd GIF version

Theorem fnmpoovd 6194
Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
fnmpoovd.m (𝜑𝑀 Fn (𝐴 × 𝐵))
fnmpoovd.s ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)
fnmpoovd.d ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)
fnmpoovd.c ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
Assertion
Ref Expression
fnmpoovd (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑖,𝑗   𝐵,𝑎,𝑏,𝑖,𝑗   𝐶,𝑖,𝑗   𝐷,𝑎,𝑏   𝑖,𝑀,𝑗   𝜑,𝑎,𝑏,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑎,𝑏)   𝐷(𝑖,𝑗)   𝑈(𝑖,𝑗,𝑎,𝑏)   𝑀(𝑎,𝑏)   𝑉(𝑖,𝑗,𝑎,𝑏)

Proof of Theorem fnmpoovd
StepHypRef Expression
1 fnmpoovd.m . . 3 (𝜑𝑀 Fn (𝐴 × 𝐵))
2 fnmpoovd.c . . . . . 6 ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
323expb 1199 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝐶𝑉)
43ralrimivva 2552 . . . 4 (𝜑 → ∀𝑎𝐴𝑏𝐵 𝐶𝑉)
5 eqid 2170 . . . . 5 (𝑎𝐴, 𝑏𝐵𝐶) = (𝑎𝐴, 𝑏𝐵𝐶)
65fnmpo 6181 . . . 4 (∀𝑎𝐴𝑏𝐵 𝐶𝑉 → (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵))
74, 6syl 14 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵))
8 eqfnov2 5960 . . 3 ((𝑀 Fn (𝐴 × 𝐵) ∧ (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵)) → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗)))
91, 7, 8syl2anc 409 . 2 (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗)))
10 nfcv 2312 . . . . . . . 8 𝑎𝐷
11 nfcv 2312 . . . . . . . 8 𝑏𝐷
12 nfcv 2312 . . . . . . . 8 𝑖𝐶
13 nfcv 2312 . . . . . . . 8 𝑗𝐶
14 fnmpoovd.s . . . . . . . 8 ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)
1510, 11, 12, 13, 14cbvmpo 5932 . . . . . . 7 (𝑖𝐴, 𝑗𝐵𝐷) = (𝑎𝐴, 𝑏𝐵𝐶)
1615eqcomi 2174 . . . . . 6 (𝑎𝐴, 𝑏𝐵𝐶) = (𝑖𝐴, 𝑗𝐵𝐷)
1716a1i 9 . . . . 5 (𝜑 → (𝑎𝐴, 𝑏𝐵𝐶) = (𝑖𝐴, 𝑗𝐵𝐷))
1817oveqd 5870 . . . 4 (𝜑 → (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗))
1918eqeq2d 2182 . . 3 (𝜑 → ((𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) ↔ (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗)))
20192ralbidv 2494 . 2 (𝜑 → (∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗)))
21 simprl 526 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝑖𝐴)
22 simprr 527 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝑗𝐵)
23 fnmpoovd.d . . . . . 6 ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)
24233expb 1199 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝐷𝑈)
25 eqid 2170 . . . . . 6 (𝑖𝐴, 𝑗𝐵𝐷) = (𝑖𝐴, 𝑗𝐵𝐷)
2625ovmpt4g 5975 . . . . 5 ((𝑖𝐴𝑗𝐵𝐷𝑈) → (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) = 𝐷)
2721, 22, 24, 26syl3anc 1233 . . . 4 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) = 𝐷)
2827eqeq2d 2182 . . 3 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → ((𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) ↔ (𝑖𝑀𝑗) = 𝐷))
29282ralbidva 2492 . 2 (𝜑 → (∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
309, 20, 293bitrd 213 1 (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wral 2448   × cxp 4609   Fn wfn 5193  (class class class)co 5853  cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator