| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpll 527 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → 𝜑) | 
| 2 |   | simprl 529 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → 𝑧 ∈ 𝑃) | 
| 3 |   | simplr 528 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → 𝑠 ⊆ 𝐵) | 
| 4 |   | simprrl 539 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → 𝑎 ∈ 𝑠) | 
| 5 | 3, 4 | sseldd 3184 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → 𝑎 ∈ 𝐵) | 
| 6 |   | lsspropd.s1 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) ∈ 𝑊) | 
| 7 | 6 | ralrimivva 2579 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠
‘𝐾)𝑦) ∈ 𝑊) | 
| 8 | 7 | ad2antrr 488 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠
‘𝐾)𝑦) ∈ 𝑊) | 
| 9 |   | ovrspc2v 5948 | 
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ 𝑃 ∧ 𝑎 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠
‘𝐾)𝑦) ∈ 𝑊) → (𝑧( ·𝑠
‘𝐾)𝑎) ∈ 𝑊) | 
| 10 | 2, 5, 8, 9 | syl21anc 1248 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → (𝑧( ·𝑠
‘𝐾)𝑎) ∈ 𝑊) | 
| 11 |   | lsspropd.w | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ⊆ 𝑊) | 
| 12 | 11 | ad2antrr 488 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → 𝐵 ⊆ 𝑊) | 
| 13 |   | simprrr 540 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → 𝑏 ∈ 𝑠) | 
| 14 | 3, 13 | sseldd 3184 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → 𝑏 ∈ 𝐵) | 
| 15 | 12, 14 | sseldd 3184 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → 𝑏 ∈ 𝑊) | 
| 16 |   | lsspropd.p | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | 
| 17 | 16 | oveqrspc2v 5949 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑧( ·𝑠
‘𝐾)𝑎) ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) = ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐿)𝑏)) | 
| 18 | 1, 10, 15, 17 | syl12anc 1247 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) = ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐿)𝑏)) | 
| 19 |   | lsspropd.s2 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦)) | 
| 20 | 19 | oveqrspc2v 5949 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑃 ∧ 𝑎 ∈ 𝐵)) → (𝑧( ·𝑠
‘𝐾)𝑎) = (𝑧( ·𝑠
‘𝐿)𝑎)) | 
| 21 | 1, 2, 5, 20 | syl12anc 1247 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → (𝑧( ·𝑠
‘𝐾)𝑎) = (𝑧( ·𝑠
‘𝐿)𝑎)) | 
| 22 | 21 | oveq1d 5937 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐿)𝑏) = ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏)) | 
| 23 | 18, 22 | eqtrd 2229 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) = ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏)) | 
| 24 | 23 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ (𝑧 ∈ 𝑃 ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠))) → (((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠 ↔ ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠)) | 
| 25 | 24 | anassrs 400 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ 𝑧 ∈ 𝑃) ∧ (𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠)) → (((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠 ↔ ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠)) | 
| 26 | 25 | 2ralbidva 2519 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ⊆ 𝐵) ∧ 𝑧 ∈ 𝑃) → (∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠 ↔ ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠)) | 
| 27 | 26 | ralbidva 2493 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐵) → (∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠 ↔ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠)) | 
| 28 | 27 | anbi2d 464 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐵) → ((∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠) ↔ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠))) | 
| 29 | 28 | pm5.32da 452 | 
. . . . 5
⊢ (𝜑 → ((𝑠 ⊆ 𝐵 ∧ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠)) ↔ (𝑠 ⊆ 𝐵 ∧ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠)))) | 
| 30 |   | 3anass 984 | 
. . . . 5
⊢ ((𝑠 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠) ↔ (𝑠 ⊆ 𝐵 ∧ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠))) | 
| 31 |   | 3anass 984 | 
. . . . 5
⊢ ((𝑠 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠) ↔ (𝑠 ⊆ 𝐵 ∧ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠))) | 
| 32 | 29, 30, 31 | 3bitr4g 223 | 
. . . 4
⊢ (𝜑 → ((𝑠 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠) ↔ (𝑠 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠))) | 
| 33 |   | lsspropd.b1 | 
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | 
| 34 | 33 | sseq2d 3213 | 
. . . . 5
⊢ (𝜑 → (𝑠 ⊆ 𝐵 ↔ 𝑠 ⊆ (Base‘𝐾))) | 
| 35 |   | lsspropd.p1 | 
. . . . . 6
⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) | 
| 36 | 35 | raleqdv 2699 | 
. . . . 5
⊢ (𝜑 → (∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠 ↔ ∀𝑧 ∈ (Base‘(Scalar‘𝐾))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠)) | 
| 37 | 34, 36 | 3anbi13d 1325 | 
. . . 4
⊢ (𝜑 → ((𝑠 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐾) ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐾))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠))) | 
| 38 |   | lsspropd.b2 | 
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | 
| 39 | 38 | sseq2d 3213 | 
. . . . 5
⊢ (𝜑 → (𝑠 ⊆ 𝐵 ↔ 𝑠 ⊆ (Base‘𝐿))) | 
| 40 |   | lsspropd.p2 | 
. . . . . 6
⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) | 
| 41 | 40 | raleqdv 2699 | 
. . . . 5
⊢ (𝜑 → (∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠 ↔ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠)) | 
| 42 | 39, 41 | 3anbi13d 1325 | 
. . . 4
⊢ (𝜑 → ((𝑠 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ 𝑃 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠))) | 
| 43 | 32, 37, 42 | 3bitr3d 218 | 
. . 3
⊢ (𝜑 → ((𝑠 ⊆ (Base‘𝐾) ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐾))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠))) | 
| 44 |   | lsppropd.v1 | 
. . . 4
⊢ (𝜑 → 𝐾 ∈ 𝑋) | 
| 45 |   | eqid 2196 | 
. . . . 5
⊢
(Scalar‘𝐾) =
(Scalar‘𝐾) | 
| 46 |   | eqid 2196 | 
. . . . 5
⊢
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾)) | 
| 47 |   | eqid 2196 | 
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 48 |   | eqid 2196 | 
. . . . 5
⊢
(+g‘𝐾) = (+g‘𝐾) | 
| 49 |   | eqid 2196 | 
. . . . 5
⊢ (
·𝑠 ‘𝐾) = ( ·𝑠
‘𝐾) | 
| 50 |   | eqid 2196 | 
. . . . 5
⊢
(LSubSp‘𝐾) =
(LSubSp‘𝐾) | 
| 51 | 45, 46, 47, 48, 49, 50 | islssmg 13914 | 
. . . 4
⊢ (𝐾 ∈ 𝑋 → (𝑠 ∈ (LSubSp‘𝐾) ↔ (𝑠 ⊆ (Base‘𝐾) ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐾))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠))) | 
| 52 | 44, 51 | syl 14 | 
. . 3
⊢ (𝜑 → (𝑠 ∈ (LSubSp‘𝐾) ↔ (𝑠 ⊆ (Base‘𝐾) ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐾))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐾)𝑎)(+g‘𝐾)𝑏) ∈ 𝑠))) | 
| 53 |   | lsppropd.v2 | 
. . . 4
⊢ (𝜑 → 𝐿 ∈ 𝑌) | 
| 54 |   | eqid 2196 | 
. . . . 5
⊢
(Scalar‘𝐿) =
(Scalar‘𝐿) | 
| 55 |   | eqid 2196 | 
. . . . 5
⊢
(Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿)) | 
| 56 |   | eqid 2196 | 
. . . . 5
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 57 |   | eqid 2196 | 
. . . . 5
⊢
(+g‘𝐿) = (+g‘𝐿) | 
| 58 |   | eqid 2196 | 
. . . . 5
⊢ (
·𝑠 ‘𝐿) = ( ·𝑠
‘𝐿) | 
| 59 |   | eqid 2196 | 
. . . . 5
⊢
(LSubSp‘𝐿) =
(LSubSp‘𝐿) | 
| 60 | 54, 55, 56, 57, 58, 59 | islssmg 13914 | 
. . . 4
⊢ (𝐿 ∈ 𝑌 → (𝑠 ∈ (LSubSp‘𝐿) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠))) | 
| 61 | 53, 60 | syl 14 | 
. . 3
⊢ (𝜑 → (𝑠 ∈ (LSubSp‘𝐿) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ ∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑧( ·𝑠
‘𝐿)𝑎)(+g‘𝐿)𝑏) ∈ 𝑠))) | 
| 62 | 43, 52, 61 | 3bitr4d 220 | 
. 2
⊢ (𝜑 → (𝑠 ∈ (LSubSp‘𝐾) ↔ 𝑠 ∈ (LSubSp‘𝐿))) | 
| 63 | 62 | eqrdv 2194 | 
1
⊢ (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿)) |