ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismet2 GIF version

Theorem ismet2 13148
Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ismet2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))

Proof of Theorem ismet2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metrel 13136 . . 3 Rel Met
2 relelfvdm 5528 . . . 4 ((Rel Met ∧ 𝐷 ∈ (Met‘𝑋)) → 𝑋 ∈ dom Met)
32elexd 2743 . . 3 ((Rel Met ∧ 𝐷 ∈ (Met‘𝑋)) → 𝑋 ∈ V)
41, 3mpan 422 . 2 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V)
5 xmetrel 13137 . . . . 5 Rel ∞Met
6 relelfvdm 5528 . . . . 5 ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met)
75, 6mpan 422 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
87elexd 2743 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ V)
98adantr 274 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝑋 ∈ V)
10 simpllr 529 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
11 simpr 109 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
12 simplrl 530 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑥𝑋)
1310, 11, 12fovrnd 5997 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧𝐷𝑥) ∈ ℝ)
14 simplrr 531 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑦𝑋)
1510, 11, 14fovrnd 5997 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧𝐷𝑦) ∈ ℝ)
1613, 15rexaddd 9811 . . . . . . . . . 10 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1716breq2d 4001 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
1817ralbidva 2466 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
1918anbi2d 461 . . . . . . 7 (((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
20192ralbidva 2492 . . . . . 6 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
21 simpr 109 . . . . . . . 8 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
22 ressxr 7963 . . . . . . . 8 ℝ ⊆ ℝ*
23 fss 5359 . . . . . . . 8 ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2421, 22, 23sylancl 411 . . . . . . 7 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2524biantrurd 303 . . . . . 6 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
2620, 25bitr3d 189 . . . . 5 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
2726pm5.32da 449 . . . 4 (𝑋 ∈ V → ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))))
28 ancom 264 . . . 4 ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
2927, 28bitrdi 195 . . 3 (𝑋 ∈ V → ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)))
30 ismet 13138 . . 3 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
31 isxmet 13139 . . . 4 (𝑋 ∈ V → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
3231anbi1d 462 . . 3 (𝑋 ∈ V → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)))
3329, 30, 323bitr4d 219 . 2 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)))
344, 9, 33pm5.21nii 699 1 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  wss 3121   class class class wbr 3989   × cxp 4609  dom cdm 4611  Rel wrel 4616  wf 5194  cfv 5198  (class class class)co 5853  cr 7773  0cc0 7774   + caddc 7777  *cxr 7953  cle 7955   +𝑒 cxad 9727  ∞Metcxmet 12774  Metcmet 12775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-rnegex 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-xadd 9730  df-xmet 12782  df-met 12783
This theorem is referenced by:  metxmet  13149  metres2  13175  xmetresbl  13234  bdmet  13296
  Copyright terms: Public domain W3C validator