| Step | Hyp | Ref
| Expression |
| 1 | | metrel 14662 |
. . 3
⊢ Rel
Met |
| 2 | | relelfvdm 5593 |
. . . 4
⊢ ((Rel Met
∧ 𝐷 ∈
(Met‘𝑋)) → 𝑋 ∈ dom
Met) |
| 3 | 2 | elexd 2776 |
. . 3
⊢ ((Rel Met
∧ 𝐷 ∈
(Met‘𝑋)) → 𝑋 ∈ V) |
| 4 | 1, 3 | mpan 424 |
. 2
⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V) |
| 5 | | xmetrel 14663 |
. . . . 5
⊢ Rel
∞Met |
| 6 | | relelfvdm 5593 |
. . . . 5
⊢ ((Rel
∞Met ∧ 𝐷 ∈
(∞Met‘𝑋))
→ 𝑋 ∈ dom
∞Met) |
| 7 | 5, 6 | mpan 424 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
| 8 | 7 | elexd 2776 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ V) |
| 9 | 8 | adantr 276 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝑋 ∈ V) |
| 10 | | simpllr 534 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
| 11 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
| 12 | | simplrl 535 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 13 | 10, 11, 12 | fovcdmd 6072 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑧𝐷𝑥) ∈ ℝ) |
| 14 | | simplrr 536 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
| 15 | 10, 11, 14 | fovcdmd 6072 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑧𝐷𝑦) ∈ ℝ) |
| 16 | 13, 15 | rexaddd 9946 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
| 17 | 16 | breq2d 4046 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) |
| 18 | 17 | ralbidva 2493 |
. . . . . . . 8
⊢ (((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) |
| 19 | 18 | anbi2d 464 |
. . . . . . 7
⊢ (((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) |
| 20 | 19 | 2ralbidva 2519 |
. . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) |
| 21 | | simpr 110 |
. . . . . . . 8
⊢ ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
| 22 | | ressxr 8087 |
. . . . . . . 8
⊢ ℝ
⊆ ℝ* |
| 23 | | fss 5422 |
. . . . . . . 8
⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆
ℝ*) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 24 | 21, 22, 23 | sylancl 413 |
. . . . . . 7
⊢ ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 25 | 24 | biantrurd 305 |
. . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
| 26 | 20, 25 | bitr3d 190 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
| 27 | 26 | pm5.32da 452 |
. . . 4
⊢ (𝑋 ∈ V → ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))) |
| 28 | | ancom 266 |
. . . 4
⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) |
| 29 | 27, 28 | bitrdi 196 |
. . 3
⊢ (𝑋 ∈ V → ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))) |
| 30 | | ismet 14664 |
. . 3
⊢ (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) |
| 31 | | isxmet 14665 |
. . . 4
⊢ (𝑋 ∈ V → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
| 32 | 31 | anbi1d 465 |
. . 3
⊢ (𝑋 ∈ V → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))) |
| 33 | 29, 30, 32 | 3bitr4d 220 |
. 2
⊢ (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))) |
| 34 | 4, 9, 33 | pm5.21nii 705 |
1
⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) |