ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soinxp GIF version

Theorem soinxp 4730
Description: Intersection of linear order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
soinxp (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)

Proof of Theorem soinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poinxp 4729 . . 3 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
2 brinxp 4728 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
323adant3 1019 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
4 brinxp 4728 . . . . . . . . 9 ((𝑥𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
543adant2 1018 . . . . . . . 8 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6 brinxp 4728 . . . . . . . . . 10 ((𝑧𝐴𝑦𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
76ancoms 268 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
873adant1 1017 . . . . . . . 8 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
95, 8orbi12d 794 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑧𝑧𝑅𝑦) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))
103, 9imbi12d 234 . . . . . 6 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
11103expb 1206 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
12112ralbidva 2516 . . . 4 (𝑥𝐴 → (∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
1312ralbiia 2508 . . 3 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))
141, 13anbi12i 460 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
15 df-iso 4329 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
16 df-iso 4329 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
1714, 15, 163bitr4i 212 1 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980  wcel 2164  wral 2472  cin 3153   class class class wbr 4030   Po wpo 4326   Or wor 4327   × cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-po 4328  df-iso 4329  df-xp 4666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator