ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soinxp GIF version

Theorem soinxp 4693
Description: Intersection of linear order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
soinxp (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)

Proof of Theorem soinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poinxp 4692 . . 3 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
2 brinxp 4691 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
323adant3 1017 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
4 brinxp 4691 . . . . . . . . 9 ((𝑥𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
543adant2 1016 . . . . . . . 8 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6 brinxp 4691 . . . . . . . . . 10 ((𝑧𝐴𝑦𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
76ancoms 268 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
873adant1 1015 . . . . . . . 8 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
95, 8orbi12d 793 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑧𝑧𝑅𝑦) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))
103, 9imbi12d 234 . . . . . 6 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
11103expb 1204 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
12112ralbidva 2499 . . . 4 (𝑥𝐴 → (∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
1312ralbiia 2491 . . 3 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))
141, 13anbi12i 460 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
15 df-iso 4294 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
16 df-iso 4294 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
1714, 15, 163bitr4i 212 1 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978  wcel 2148  wral 2455  cin 3128   class class class wbr 4000   Po wpo 4291   Or wor 4292   × cxp 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-po 4293  df-iso 4294  df-xp 4629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator