Step | Hyp | Ref
| Expression |
1 | | poinxp 4673 |
. . 3
⊢ (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴) |
2 | | brinxp 4672 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
3 | 2 | 3adant3 1007 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
4 | | brinxp 4672 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑧 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
5 | 4 | 3adant2 1006 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑧 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
6 | | brinxp 4672 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑧𝑅𝑦 ↔ 𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
7 | 6 | ancoms 266 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑧𝑅𝑦 ↔ 𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
8 | 7 | 3adant1 1005 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑧𝑅𝑦 ↔ 𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
9 | 5, 8 | orbi12d 783 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧 ∨ 𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))) |
10 | 3, 9 | imbi12d 233 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧 ∨ 𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))) |
11 | 10 | 3expb 1194 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧 ∨ 𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))) |
12 | 11 | 2ralbidva 2488 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧 ∨ 𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))) |
13 | 12 | ralbiia 2480 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧 ∨ 𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))) |
14 | 1, 13 | anbi12i 456 |
. 2
⊢ ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧 ∨ 𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))) |
15 | | df-iso 4275 |
. 2
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
16 | | df-iso 4275 |
. 2
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧 ∨ 𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))) |
17 | 14, 15, 16 | 3bitr4i 211 |
1
⊢ (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴) |