ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soinxp GIF version

Theorem soinxp 4766
Description: Intersection of linear order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
soinxp (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)

Proof of Theorem soinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poinxp 4765 . . 3 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
2 brinxp 4764 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
323adant3 1022 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
4 brinxp 4764 . . . . . . . . 9 ((𝑥𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
543adant2 1021 . . . . . . . 8 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6 brinxp 4764 . . . . . . . . . 10 ((𝑧𝐴𝑦𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
76ancoms 268 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
873adant1 1020 . . . . . . . 8 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
95, 8orbi12d 797 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑧𝑧𝑅𝑦) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))
103, 9imbi12d 234 . . . . . 6 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
11103expb 1209 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
12112ralbidva 2532 . . . 4 (𝑥𝐴 → (∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
1312ralbiia 2524 . . 3 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))
141, 13anbi12i 460 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
15 df-iso 4365 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
16 df-iso 4365 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
1714, 15, 163bitr4i 212 1 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712  w3a 983  wcel 2180  wral 2488  cin 3176   class class class wbr 4062   Po wpo 4362   Or wor 4363   × cxp 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-po 4364  df-iso 4365  df-xp 4702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator