| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpll 527 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝜑) | 
| 2 |   | simprll 537 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ 𝐵) | 
| 3 |   | eqid 2196 | 
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 4 |   | eqid 2196 | 
. . . . . . . . . . . . . . 15
⊢
(+g‘𝐾) = (+g‘𝐾) | 
| 5 |   | simplrl 535 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐾 ∈ Grp) | 
| 6 |   | simprlr 538 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ 𝐵) | 
| 7 |   | ringpropd.1 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | 
| 8 | 7 | ad2antrr 488 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐵 = (Base‘𝐾)) | 
| 9 | 6, 8 | eleqtrd 2275 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ (Base‘𝐾)) | 
| 10 |   | simprr 531 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ 𝐵) | 
| 11 | 10, 8 | eleqtrd 2275 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ (Base‘𝐾)) | 
| 12 | 3, 4, 5, 9, 11 | grpcld 13146 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) ∈ (Base‘𝐾)) | 
| 13 | 12, 8 | eleqtrrd 2276 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) | 
| 14 |   | ringpropd.4 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | 
| 15 | 14 | oveqrspc2v 5949 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ (𝑣(+g‘𝐾)𝑤) ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤))) | 
| 16 | 1, 2, 13, 15 | syl12anc 1247 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤))) | 
| 17 |   | ringpropd.3 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | 
| 18 | 17 | oveqrspc2v 5949 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) | 
| 19 | 1, 6, 10, 18 | syl12anc 1247 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) | 
| 20 | 19 | oveq2d 5938 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤))) | 
| 21 | 16, 20 | eqtrd 2229 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤))) | 
| 22 |   | simplrr 536 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (mulGrp‘𝐾) ∈ Mnd) | 
| 23 | 7 | adantr 276 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 = (Base‘𝐾)) | 
| 24 |   | simprl 529 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐾 ∈ Grp) | 
| 25 | 24 | elexd 2776 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐾 ∈ V) | 
| 26 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) | 
| 27 | 26, 3 | mgpbasg 13482 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ V →
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) | 
| 28 | 25, 27 | syl 14 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) | 
| 29 | 23, 28 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 =
(Base‘(mulGrp‘𝐾))) | 
| 30 | 29 | adantr 276 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐵 = (Base‘(mulGrp‘𝐾))) | 
| 31 | 2, 30 | eleqtrd 2275 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ (Base‘(mulGrp‘𝐾))) | 
| 32 | 6, 30 | eleqtrd 2275 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ (Base‘(mulGrp‘𝐾))) | 
| 33 |   | eqid 2196 | 
. . . . . . . . . . . . . . . 16
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾)) | 
| 34 |   | eqid 2196 | 
. . . . . . . . . . . . . . . 16
⊢
(+g‘(mulGrp‘𝐾)) =
(+g‘(mulGrp‘𝐾)) | 
| 35 | 33, 34 | mndcl 13064 | 
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ 𝑢 ∈
(Base‘(mulGrp‘𝐾)) ∧ 𝑣 ∈ (Base‘(mulGrp‘𝐾))) → (𝑢(+g‘(mulGrp‘𝐾))𝑣) ∈ (Base‘(mulGrp‘𝐾))) | 
| 36 | 22, 31, 32, 35 | syl3anc 1249 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘(mulGrp‘𝐾))𝑣) ∈ (Base‘(mulGrp‘𝐾))) | 
| 37 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . . 18
⊢
(.r‘𝐾) = (.r‘𝐾) | 
| 38 | 26, 37 | mgpplusgg 13480 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ V →
(.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) | 
| 39 | 25, 38 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) | 
| 40 | 39 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) | 
| 41 | 40 | oveqd 5939 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(+g‘(mulGrp‘𝐾))𝑣)) | 
| 42 | 36, 41, 30 | 3eltr4d 2280 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) ∈ 𝐵) | 
| 43 | 10, 30 | eleqtrd 2275 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ (Base‘(mulGrp‘𝐾))) | 
| 44 | 33, 34 | mndcl 13064 | 
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ 𝑢 ∈
(Base‘(mulGrp‘𝐾)) ∧ 𝑤 ∈ (Base‘(mulGrp‘𝐾))) → (𝑢(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) | 
| 45 | 22, 31, 43, 44 | syl3anc 1249 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) | 
| 46 | 40 | oveqd 5939 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(+g‘(mulGrp‘𝐾))𝑤)) | 
| 47 | 45, 46, 30 | 3eltr4d 2280 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) ∈ 𝐵) | 
| 48 | 17 | oveqrspc2v 5949 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(.r‘𝐾)𝑣) ∈ 𝐵 ∧ (𝑢(.r‘𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤))) | 
| 49 | 1, 42, 47, 48 | syl12anc 1247 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤))) | 
| 50 | 14 | oveqrspc2v 5949 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(.r‘𝐿)𝑣)) | 
| 51 | 1, 2, 6, 50 | syl12anc 1247 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(.r‘𝐿)𝑣)) | 
| 52 | 14 | oveqrspc2v 5949 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(.r‘𝐿)𝑤)) | 
| 53 | 1, 2, 10, 52 | syl12anc 1247 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(.r‘𝐿)𝑤)) | 
| 54 | 51, 53 | oveq12d 5940 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤))) | 
| 55 | 49, 54 | eqtrd 2229 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤))) | 
| 56 | 21, 55 | eqeq12d 2211 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ↔ (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)))) | 
| 57 | 2, 8 | eleqtrd 2275 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ (Base‘𝐾)) | 
| 58 | 3, 4, 5, 57, 9 | grpcld 13146 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾)) | 
| 59 | 58, 8 | eleqtrrd 2276 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) | 
| 60 | 14 | oveqrspc2v 5949 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤)) | 
| 61 | 1, 59, 10, 60 | syl12anc 1247 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤)) | 
| 62 | 17 | oveqrspc2v 5949 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) | 
| 63 | 1, 2, 6, 62 | syl12anc 1247 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) | 
| 64 | 63 | oveq1d 5937 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤) = ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤)) | 
| 65 | 61, 64 | eqtrd 2229 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤)) | 
| 66 | 33, 34 | mndcl 13064 | 
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ 𝑣 ∈
(Base‘(mulGrp‘𝐾)) ∧ 𝑤 ∈ (Base‘(mulGrp‘𝐾))) → (𝑣(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) | 
| 67 | 22, 32, 43, 66 | syl3anc 1249 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) | 
| 68 | 40 | oveqd 5939 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(+g‘(mulGrp‘𝐾))𝑤)) | 
| 69 | 67, 68, 30 | 3eltr4d 2280 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) ∈ 𝐵) | 
| 70 | 17 | oveqrspc2v 5949 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(.r‘𝐾)𝑤) ∈ 𝐵 ∧ (𝑣(.r‘𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤))) | 
| 71 | 1, 47, 69, 70 | syl12anc 1247 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤))) | 
| 72 | 14 | oveqrspc2v 5949 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(.r‘𝐿)𝑤)) | 
| 73 | 1, 6, 10, 72 | syl12anc 1247 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(.r‘𝐿)𝑤)) | 
| 74 | 53, 73 | oveq12d 5940 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) | 
| 75 | 71, 74 | eqtrd 2229 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) | 
| 76 | 65, 75 | eqeq12d 2211 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) ↔ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) | 
| 77 | 56, 76 | anbi12d 473 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 78 | 77 | anassrs 400 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 79 | 78 | ralbidva 2493 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 80 | 79 | 2ralbidva 2519 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 81 | 23 | raleqdv 2699 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) | 
| 82 | 23, 81 | raleqbidv 2709 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) | 
| 83 | 23, 82 | raleqbidv 2709 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) | 
| 84 |   | ringpropd.2 | 
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | 
| 85 | 84 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 = (Base‘𝐿)) | 
| 86 | 85 | raleqdv 2699 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 87 | 85, 86 | raleqbidv 2709 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 88 | 85, 87 | raleqbidv 2709 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 89 | 80, 83, 88 | 3bitr3d 218 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 90 | 89 | pm5.32da 452 | 
. . . 4
⊢ (𝜑 → (((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) | 
| 91 |   | df-3an 982 | 
. . . 4
⊢ ((𝐾 ∈ Grp ∧
(mulGrp‘𝐾) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) | 
| 92 |   | df-3an 982 | 
. . . 4
⊢ ((𝐾 ∈ Grp ∧
(mulGrp‘𝐾) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 93 | 90, 91, 92 | 3bitr4g 223 | 
. . 3
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) | 
| 94 | 7 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐵 = (Base‘𝐾)) | 
| 95 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐾 ∈ Grp) | 
| 96 | 95 | elexd 2776 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐾 ∈ V) | 
| 97 | 96, 27 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) | 
| 98 | 94, 97 | eqtrd 2229 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐵 = (Base‘(mulGrp‘𝐾))) | 
| 99 | 84 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐵 = (Base‘𝐿)) | 
| 100 | 7, 84, 17 | grppropd 13149 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) | 
| 101 | 100 | biimpa 296 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐿 ∈ Grp) | 
| 102 | 101 | elexd 2776 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐿 ∈ V) | 
| 103 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(mulGrp‘𝐿) =
(mulGrp‘𝐿) | 
| 104 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 105 | 103, 104 | mgpbasg 13482 | 
. . . . . . . . . 10
⊢ (𝐿 ∈ V →
(Base‘𝐿) =
(Base‘(mulGrp‘𝐿))) | 
| 106 | 102, 105 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (Base‘𝐿) =
(Base‘(mulGrp‘𝐿))) | 
| 107 | 99, 106 | eqtrd 2229 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐵 = (Base‘(mulGrp‘𝐿))) | 
| 108 | 14 | adantlr 477 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Grp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | 
| 109 | 38 | oveqd 5939 | 
. . . . . . . . . . . 12
⊢ (𝐾 ∈ V → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)) | 
| 110 | 96, 109 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)) | 
| 111 |   | eqid 2196 | 
. . . . . . . . . . . . . 14
⊢
(.r‘𝐿) = (.r‘𝐿) | 
| 112 | 103, 111 | mgpplusgg 13480 | 
. . . . . . . . . . . . 13
⊢ (𝐿 ∈ V →
(.r‘𝐿) =
(+g‘(mulGrp‘𝐿))) | 
| 113 | 112 | oveqd 5939 | 
. . . . . . . . . . . 12
⊢ (𝐿 ∈ V → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) | 
| 114 | 102, 113 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) | 
| 115 | 110, 114 | eqeq12d 2211 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → ((𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) ↔ (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))) | 
| 116 | 115 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Grp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) ↔ (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))) | 
| 117 | 108, 116 | mpbid 147 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ Grp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) | 
| 118 | 98, 107, 117 | mndpropd 13081 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → ((mulGrp‘𝐾) ∈ Mnd ↔
(mulGrp‘𝐿) ∈
Mnd)) | 
| 119 | 118 | pm5.32da 452 | 
. . . . . 6
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ↔ (𝐾 ∈ Grp ∧
(mulGrp‘𝐿) ∈
Mnd))) | 
| 120 | 100 | anbi1d 465 | 
. . . . . 6
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd) ↔ (𝐿 ∈ Grp ∧
(mulGrp‘𝐿) ∈
Mnd))) | 
| 121 | 119, 120 | bitrd 188 | 
. . . . 5
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ↔ (𝐿 ∈ Grp ∧
(mulGrp‘𝐿) ∈
Mnd))) | 
| 122 | 121 | anbi1d 465 | 
. . . 4
⊢ (𝜑 → (((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ ((𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) | 
| 123 |   | df-3an 982 | 
. . . 4
⊢ ((𝐿 ∈ Grp ∧
(mulGrp‘𝐿) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ ((𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 124 | 122, 92, 123 | 3bitr4g 223 | 
. . 3
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) | 
| 125 | 93, 124 | bitrd 188 | 
. 2
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) | 
| 126 | 3, 26, 4, 37 | isring 13556 | 
. 2
⊢ (𝐾 ∈ Ring ↔ (𝐾 ∈ Grp ∧
(mulGrp‘𝐾) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) | 
| 127 |   | eqid 2196 | 
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) | 
| 128 | 104, 103,
127, 111 | isring 13556 | 
. 2
⊢ (𝐿 ∈ Ring ↔ (𝐿 ∈ Grp ∧
(mulGrp‘𝐿) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) | 
| 129 | 125, 126,
128 | 3bitr4g 223 | 
1
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |