Step | Hyp | Ref
| Expression |
1 | | simpll 527 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝜑) |
2 | | simprll 537 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ 𝐵) |
3 | | eqid 2175 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐾) =
(Base‘𝐾) |
4 | | eqid 2175 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝐾) = (+g‘𝐾) |
5 | | simplrl 535 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐾 ∈ Grp) |
6 | | simprlr 538 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ 𝐵) |
7 | | ringpropd.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
8 | 7 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐵 = (Base‘𝐾)) |
9 | 6, 8 | eleqtrd 2254 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ (Base‘𝐾)) |
10 | | simprr 531 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
11 | 10, 8 | eleqtrd 2254 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ (Base‘𝐾)) |
12 | 3, 4, 5, 9, 11 | grpcld 12751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) ∈ (Base‘𝐾)) |
13 | 12, 8 | eleqtrrd 2255 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) |
14 | | ringpropd.4 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
15 | 14 | oveqrspc2v 5892 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ (𝑣(+g‘𝐾)𝑤) ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
16 | 1, 2, 13, 15 | syl12anc 1236 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
17 | | ringpropd.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
18 | 17 | oveqrspc2v 5892 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
19 | 1, 6, 10, 18 | syl12anc 1236 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
20 | 19 | oveq2d 5881 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
21 | 16, 20 | eqtrd 2208 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
22 | | simplrr 536 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (mulGrp‘𝐾) ∈ Mnd) |
23 | 7 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 = (Base‘𝐾)) |
24 | | simprl 529 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐾 ∈ Grp) |
25 | 24 | elexd 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐾 ∈ V) |
26 | | eqid 2175 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
27 | 26, 3 | mgpbasg 12930 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ V →
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) |
28 | 25, 27 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) |
29 | 23, 28 | eqtrd 2208 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 =
(Base‘(mulGrp‘𝐾))) |
30 | 29 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐵 = (Base‘(mulGrp‘𝐾))) |
31 | 2, 30 | eleqtrd 2254 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ (Base‘(mulGrp‘𝐾))) |
32 | 6, 30 | eleqtrd 2254 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ (Base‘(mulGrp‘𝐾))) |
33 | | eqid 2175 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾)) |
34 | | eqid 2175 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘(mulGrp‘𝐾)) =
(+g‘(mulGrp‘𝐾)) |
35 | 33, 34 | mndcl 12689 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ 𝑢 ∈
(Base‘(mulGrp‘𝐾)) ∧ 𝑣 ∈ (Base‘(mulGrp‘𝐾))) → (𝑢(+g‘(mulGrp‘𝐾))𝑣) ∈ (Base‘(mulGrp‘𝐾))) |
36 | 22, 31, 32, 35 | syl3anc 1238 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘(mulGrp‘𝐾))𝑣) ∈ (Base‘(mulGrp‘𝐾))) |
37 | | eqid 2175 |
. . . . . . . . . . . . . . . . . 18
⊢
(.r‘𝐾) = (.r‘𝐾) |
38 | 26, 37 | mgpplusgg 12929 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ V →
(.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
39 | 25, 38 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
40 | 39 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
41 | 40 | oveqd 5882 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(+g‘(mulGrp‘𝐾))𝑣)) |
42 | 36, 41, 30 | 3eltr4d 2259 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) ∈ 𝐵) |
43 | 10, 30 | eleqtrd 2254 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ (Base‘(mulGrp‘𝐾))) |
44 | 33, 34 | mndcl 12689 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ 𝑢 ∈
(Base‘(mulGrp‘𝐾)) ∧ 𝑤 ∈ (Base‘(mulGrp‘𝐾))) → (𝑢(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) |
45 | 22, 31, 43, 44 | syl3anc 1238 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) |
46 | 40 | oveqd 5882 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(+g‘(mulGrp‘𝐾))𝑤)) |
47 | 45, 46, 30 | 3eltr4d 2259 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) ∈ 𝐵) |
48 | 17 | oveqrspc2v 5892 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(.r‘𝐾)𝑣) ∈ 𝐵 ∧ (𝑢(.r‘𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤))) |
49 | 1, 42, 47, 48 | syl12anc 1236 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤))) |
50 | 14 | oveqrspc2v 5892 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(.r‘𝐿)𝑣)) |
51 | 1, 2, 6, 50 | syl12anc 1236 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(.r‘𝐿)𝑣)) |
52 | 14 | oveqrspc2v 5892 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(.r‘𝐿)𝑤)) |
53 | 1, 2, 10, 52 | syl12anc 1236 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(.r‘𝐿)𝑤)) |
54 | 51, 53 | oveq12d 5883 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤))) |
55 | 49, 54 | eqtrd 2208 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤))) |
56 | 21, 55 | eqeq12d 2190 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ↔ (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)))) |
57 | 2, 8 | eleqtrd 2254 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ (Base‘𝐾)) |
58 | 3, 4, 5, 57, 9 | grpcld 12751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾)) |
59 | 58, 8 | eleqtrrd 2255 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) |
60 | 14 | oveqrspc2v 5892 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤)) |
61 | 1, 59, 10, 60 | syl12anc 1236 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤)) |
62 | 17 | oveqrspc2v 5892 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
63 | 1, 2, 6, 62 | syl12anc 1236 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
64 | 63 | oveq1d 5880 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤) = ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤)) |
65 | 61, 64 | eqtrd 2208 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤)) |
66 | 33, 34 | mndcl 12689 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ 𝑣 ∈
(Base‘(mulGrp‘𝐾)) ∧ 𝑤 ∈ (Base‘(mulGrp‘𝐾))) → (𝑣(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) |
67 | 22, 32, 43, 66 | syl3anc 1238 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘(mulGrp‘𝐾))𝑤) ∈ (Base‘(mulGrp‘𝐾))) |
68 | 40 | oveqd 5882 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(+g‘(mulGrp‘𝐾))𝑤)) |
69 | 67, 68, 30 | 3eltr4d 2259 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) ∈ 𝐵) |
70 | 17 | oveqrspc2v 5892 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(.r‘𝐾)𝑤) ∈ 𝐵 ∧ (𝑣(.r‘𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤))) |
71 | 1, 47, 69, 70 | syl12anc 1236 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤))) |
72 | 14 | oveqrspc2v 5892 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(.r‘𝐿)𝑤)) |
73 | 1, 6, 10, 72 | syl12anc 1236 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(.r‘𝐿)𝑤)) |
74 | 53, 73 | oveq12d 5883 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) |
75 | 71, 74 | eqtrd 2208 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) |
76 | 65, 75 | eqeq12d 2190 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) ↔ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) |
77 | 56, 76 | anbi12d 473 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
78 | 77 | anassrs 400 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
79 | 78 | ralbidva 2471 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
80 | 79 | 2ralbidva 2497 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
81 | 23 | raleqdv 2676 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
82 | 23, 81 | raleqbidv 2682 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
83 | 23, 82 | raleqbidv 2682 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
84 | | ringpropd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
85 | 84 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 = (Base‘𝐿)) |
86 | 85 | raleqdv 2676 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
87 | 85, 86 | raleqbidv 2682 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
88 | 85, 87 | raleqbidv 2682 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
89 | 80, 83, 88 | 3bitr3d 218 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
90 | 89 | pm5.32da 452 |
. . . 4
⊢ (𝜑 → (((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
91 | | df-3an 980 |
. . . 4
⊢ ((𝐾 ∈ Grp ∧
(mulGrp‘𝐾) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
92 | | df-3an 980 |
. . . 4
⊢ ((𝐾 ∈ Grp ∧
(mulGrp‘𝐾) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
93 | 90, 91, 92 | 3bitr4g 223 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
94 | 7 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐵 = (Base‘𝐾)) |
95 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐾 ∈ Grp) |
96 | 95 | elexd 2748 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐾 ∈ V) |
97 | 96, 27 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (Base‘𝐾) =
(Base‘(mulGrp‘𝐾))) |
98 | 94, 97 | eqtrd 2208 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐵 = (Base‘(mulGrp‘𝐾))) |
99 | 84 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐵 = (Base‘𝐿)) |
100 | 7, 84, 17 | grppropd 12754 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
101 | 100 | biimpa 296 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐿 ∈ Grp) |
102 | 101 | elexd 2748 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐿 ∈ V) |
103 | | eqid 2175 |
. . . . . . . . . . 11
⊢
(mulGrp‘𝐿) =
(mulGrp‘𝐿) |
104 | | eqid 2175 |
. . . . . . . . . . 11
⊢
(Base‘𝐿) =
(Base‘𝐿) |
105 | 103, 104 | mgpbasg 12930 |
. . . . . . . . . 10
⊢ (𝐿 ∈ V →
(Base‘𝐿) =
(Base‘(mulGrp‘𝐿))) |
106 | 102, 105 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (Base‘𝐿) =
(Base‘(mulGrp‘𝐿))) |
107 | 99, 106 | eqtrd 2208 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐵 = (Base‘(mulGrp‘𝐿))) |
108 | 14 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Grp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
109 | 38 | oveqd 5882 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ V → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)) |
110 | 96, 109 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)) |
111 | | eqid 2175 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝐿) = (.r‘𝐿) |
112 | 103, 111 | mgpplusgg 12929 |
. . . . . . . . . . . . 13
⊢ (𝐿 ∈ V →
(.r‘𝐿) =
(+g‘(mulGrp‘𝐿))) |
113 | 112 | oveqd 5882 |
. . . . . . . . . . . 12
⊢ (𝐿 ∈ V → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
114 | 102, 113 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
115 | 110, 114 | eqeq12d 2190 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → ((𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) ↔ (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))) |
116 | 115 | adantr 276 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Grp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) ↔ (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))) |
117 | 108, 116 | mpbid 147 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ Grp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
118 | 98, 107, 117 | mndpropd 12706 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → ((mulGrp‘𝐾) ∈ Mnd ↔
(mulGrp‘𝐿) ∈
Mnd)) |
119 | 118 | pm5.32da 452 |
. . . . . 6
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ↔ (𝐾 ∈ Grp ∧
(mulGrp‘𝐿) ∈
Mnd))) |
120 | 100 | anbi1d 465 |
. . . . . 6
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd) ↔ (𝐿 ∈ Grp ∧
(mulGrp‘𝐿) ∈
Mnd))) |
121 | 119, 120 | bitrd 188 |
. . . . 5
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ↔ (𝐿 ∈ Grp ∧
(mulGrp‘𝐿) ∈
Mnd))) |
122 | 121 | anbi1d 465 |
. . . 4
⊢ (𝜑 → (((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ ((𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
123 | | df-3an 980 |
. . . 4
⊢ ((𝐿 ∈ Grp ∧
(mulGrp‘𝐿) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ ((𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
124 | 122, 92, 123 | 3bitr4g 223 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
125 | 93, 124 | bitrd 188 |
. 2
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
126 | 3, 26, 4, 37 | isring 12976 |
. 2
⊢ (𝐾 ∈ Ring ↔ (𝐾 ∈ Grp ∧
(mulGrp‘𝐾) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
127 | | eqid 2175 |
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) |
128 | 104, 103,
127, 111 | isring 12976 |
. 2
⊢ (𝐿 ∈ Ring ↔ (𝐿 ∈ Grp ∧
(mulGrp‘𝐿) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
129 | 125, 126,
128 | 3bitr4g 223 |
1
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |