ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbidva Unicode version

Theorem 2ralbidva 2499
Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.)
Hypothesis
Ref Expression
2ralbidva.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( ps  <->  ch )
)
Assertion
Ref Expression
2ralbidva  |-  ( ph  ->  ( A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch )
)
Distinct variable groups:    x, y, ph    y, A
Allowed substitution hints:    ps( x, y)    ch( x, y)    A( x)    B( x, y)

Proof of Theorem 2ralbidva
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ x ph
2 nfv 1528 . 2  |-  F/ y
ph
3 2ralbidva.1 . 2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( ps  <->  ch )
)
41, 2, 32ralbida 2498 1  |-  ( ph  ->  ( A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-ral 2460
This theorem is referenced by:  soinxp  4698  isotr  5820  fnmpoovd  6219  mndpropd  12847  mhmpropd  12863  cmnpropd  13104  ringpropd  13223  lmodprop2d  13444  lsspropdg  13523  ismet2  13994  txmetcn  14159
  Copyright terms: Public domain W3C validator