ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnpropd GIF version

Theorem cmnpropd 12894
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablpropd.1 (𝜑𝐵 = (Base‘𝐾))
ablpropd.2 (𝜑𝐵 = (Base‘𝐿))
ablpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
cmnpropd (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem cmnpropd
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 ablpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 ablpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3mndpropd 12706 . . 3 (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
53oveqrspc2v 5892 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
63oveqrspc2v 5892 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → (𝑣(+g𝐾)𝑢) = (𝑣(+g𝐿)𝑢))
76ancom2s 566 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑣(+g𝐾)𝑢) = (𝑣(+g𝐿)𝑢))
85, 7eqeq12d 2190 . . . . 5 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → ((𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
982ralbidva 2497 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
101raleqdv 2676 . . . . 5 (𝜑 → (∀𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
111, 10raleqbidv 2682 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
122raleqdv 2676 . . . . 5 (𝜑 → (∀𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
132, 12raleqbidv 2682 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
149, 11, 133bitr3d 218 . . 3 (𝜑 → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
154, 14anbi12d 473 . 2 (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢))))
16 eqid 2175 . . 3 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2175 . . 3 (+g𝐾) = (+g𝐾)
1816, 17iscmn 12892 . 2 (𝐾 ∈ CMnd ↔ (𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
19 eqid 2175 . . 3 (Base‘𝐿) = (Base‘𝐿)
20 eqid 2175 . . 3 (+g𝐿) = (+g𝐿)
2119, 20iscmn 12892 . 2 (𝐿 ∈ CMnd ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
2215, 18, 213bitr4g 223 1 (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  wral 2453  cfv 5208  (class class class)co 5865  Basecbs 12428  +gcplusg 12492  Mndcmnd 12682  CMndccmn 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-cmn 12886
This theorem is referenced by:  ablpropd  12895  crngpropd  13010
  Copyright terms: Public domain W3C validator