| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cmnpropd | GIF version | ||
| Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| ablpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| ablpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| cmnpropd | ⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | ablpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | ablpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 4 | 1, 2, 3 | mndpropd 13481 | . . 3 ⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
| 5 | 3 | oveqrspc2v 6034 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
| 6 | 3 | oveqrspc2v 6034 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑢) = (𝑣(+g‘𝐿)𝑢)) |
| 7 | 6 | ancom2s 566 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑢) = (𝑣(+g‘𝐿)𝑢)) |
| 8 | 5, 7 | eqeq12d 2244 | . . . . 5 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢) ↔ (𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) |
| 9 | 8 | 2ralbidva 2552 | . . . 4 ⊢ (𝜑 → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) |
| 10 | 1 | raleqdv 2734 | . . . . 5 ⊢ (𝜑 → (∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐾)(𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢))) |
| 11 | 1, 10 | raleqbidv 2744 | . . . 4 ⊢ (𝜑 → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢))) |
| 12 | 2 | raleqdv 2734 | . . . . 5 ⊢ (𝜑 → (∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐿)(𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) |
| 13 | 2, 12 | raleqbidv 2744 | . . . 4 ⊢ (𝜑 → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) |
| 14 | 9, 11, 13 | 3bitr3d 218 | . . 3 ⊢ (𝜑 → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) |
| 15 | 4, 14 | anbi12d 473 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢)))) |
| 16 | eqid 2229 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 17 | eqid 2229 | . . 3 ⊢ (+g‘𝐾) = (+g‘𝐾) | |
| 18 | 16, 17 | iscmn 13838 | . 2 ⊢ (𝐾 ∈ CMnd ↔ (𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢))) |
| 19 | eqid 2229 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 20 | eqid 2229 | . . 3 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
| 21 | 19, 20 | iscmn 13838 | . 2 ⊢ (𝐿 ∈ CMnd ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) |
| 22 | 15, 18, 21 | 3bitr4g 223 | 1 ⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 Mndcmnd 13457 CMndccmn 13829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-cmn 13831 |
| This theorem is referenced by: ablpropd 13841 crngpropd 14010 |
| Copyright terms: Public domain | W3C validator |