ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnpropd GIF version

Theorem cmnpropd 13368
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablpropd.1 (𝜑𝐵 = (Base‘𝐾))
ablpropd.2 (𝜑𝐵 = (Base‘𝐿))
ablpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
cmnpropd (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem cmnpropd
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 ablpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 ablpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3mndpropd 13024 . . 3 (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
53oveqrspc2v 5946 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
63oveqrspc2v 5946 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → (𝑣(+g𝐾)𝑢) = (𝑣(+g𝐿)𝑢))
76ancom2s 566 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑣(+g𝐾)𝑢) = (𝑣(+g𝐿)𝑢))
85, 7eqeq12d 2208 . . . . 5 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → ((𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
982ralbidva 2516 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
101raleqdv 2696 . . . . 5 (𝜑 → (∀𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
111, 10raleqbidv 2706 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
122raleqdv 2696 . . . . 5 (𝜑 → (∀𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
132, 12raleqbidv 2706 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
149, 11, 133bitr3d 218 . . 3 (𝜑 → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
154, 14anbi12d 473 . 2 (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢))))
16 eqid 2193 . . 3 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2193 . . 3 (+g𝐾) = (+g𝐾)
1816, 17iscmn 13366 . 2 (𝐾 ∈ CMnd ↔ (𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
19 eqid 2193 . . 3 (Base‘𝐿) = (Base‘𝐿)
20 eqid 2193 . . 3 (+g𝐿) = (+g𝐿)
2119, 20iscmn 13366 . 2 (𝐿 ∈ CMnd ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
2215, 18, 213bitr4g 223 1 (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  Mndcmnd 13000  CMndccmn 13357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-cmn 13359
This theorem is referenced by:  ablpropd  13369  crngpropd  13538
  Copyright terms: Public domain W3C validator