ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnpropd GIF version

Theorem cmnpropd 13818
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablpropd.1 (𝜑𝐵 = (Base‘𝐾))
ablpropd.2 (𝜑𝐵 = (Base‘𝐿))
ablpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
cmnpropd (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem cmnpropd
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 ablpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 ablpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3mndpropd 13459 . . 3 (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
53oveqrspc2v 6021 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
63oveqrspc2v 6021 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → (𝑣(+g𝐾)𝑢) = (𝑣(+g𝐿)𝑢))
76ancom2s 566 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑣(+g𝐾)𝑢) = (𝑣(+g𝐿)𝑢))
85, 7eqeq12d 2244 . . . . 5 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → ((𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
982ralbidva 2552 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
101raleqdv 2734 . . . . 5 (𝜑 → (∀𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
111, 10raleqbidv 2744 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
122raleqdv 2734 . . . . 5 (𝜑 → (∀𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
132, 12raleqbidv 2744 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
149, 11, 133bitr3d 218 . . 3 (𝜑 → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
154, 14anbi12d 473 . 2 (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢))))
16 eqid 2229 . . 3 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2229 . . 3 (+g𝐾) = (+g𝐾)
1816, 17iscmn 13816 . 2 (𝐾 ∈ CMnd ↔ (𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
19 eqid 2229 . . 3 (Base‘𝐿) = (Base‘𝐿)
20 eqid 2229 . . 3 (+g𝐿) = (+g𝐿)
2119, 20iscmn 13816 . 2 (𝐿 ∈ CMnd ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
2215, 18, 213bitr4g 223 1 (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  Mndcmnd 13435  CMndccmn 13807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-cmn 13809
This theorem is referenced by:  ablpropd  13819  crngpropd  13988
  Copyright terms: Public domain W3C validator