![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2sb5 | GIF version |
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2sb5 | ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5 1887 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥(𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑)) | |
2 | 19.42v 1906 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝑧 ∧ (𝑦 = 𝑤 ∧ 𝜑)) ↔ (𝑥 = 𝑧 ∧ ∃𝑦(𝑦 = 𝑤 ∧ 𝜑))) | |
3 | anass 401 | . . . . 5 ⊢ (((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑) ↔ (𝑥 = 𝑧 ∧ (𝑦 = 𝑤 ∧ 𝜑))) | |
4 | 3 | exbii 1605 | . . . 4 ⊢ (∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑) ↔ ∃𝑦(𝑥 = 𝑧 ∧ (𝑦 = 𝑤 ∧ 𝜑))) |
5 | sb5 1887 | . . . . 5 ⊢ ([𝑤 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝑤 ∧ 𝜑)) | |
6 | 5 | anbi2i 457 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑) ↔ (𝑥 = 𝑧 ∧ ∃𝑦(𝑦 = 𝑤 ∧ 𝜑))) |
7 | 2, 4, 6 | 3bitr4ri 213 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
8 | 7 | exbii 1605 | . 2 ⊢ (∃𝑥(𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
9 | 1, 8 | bitri 184 | 1 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1492 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-sb 1763 |
This theorem is referenced by: opelopabsbALT 4261 |
Copyright terms: Public domain | W3C validator |