| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3bitr2rd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) | 
| Ref | Expression | 
|---|---|
| 3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| 3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | 
| 3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | 
| Ref | Expression | 
|---|---|
| 3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | 
| 4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitr2d 189 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm4.55dc 940 anordc 958 fndmdif 5667 addsubeq4 8241 muleqadd 8695 nn0lt10b 9406 adddivflid 10382 frec2uzltd 10495 mul0inf 11406 summodnegmod 11987 lgsdilem 15268 lgsne0 15279 iooref1o 15678 | 
| Copyright terms: Public domain | W3C validator |