ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem GIF version

Theorem lgsdilem 15700
Description: Lemma for lgsdi 15710 and lgsdir 15708: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdilem (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))

Proof of Theorem lgsdilem
StepHypRef Expression
1 simplrr 536 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ≠ 0)
21biantrud 304 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 ≤ 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
3 0z 9453 . . . . . . . . . . 11 0 ∈ ℤ
4 simpl2 1025 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
54adantr 276 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℤ)
6 zltlen 9521 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
73, 5, 6sylancr 414 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
8 simpl1 1024 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
98zred 9565 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℝ)
109adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
1110renegcld 8522 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
1211recnd 8171 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → -𝐴 ∈ ℂ)
1312mul01d 8535 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-𝐴 · 0) = 0)
1410recnd 8171 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
154zred 9565 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
1615adantr 276 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
1716recnd 8171 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℂ)
1814, 17mulneg1d 8553 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
1913, 18breq12d 4095 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((-𝐴 · 0) < (-𝐴 · 𝐵) ↔ 0 < -(𝐴 · 𝐵)))
20 0red 8143 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
219lt0neg1d 8658 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 < 0 ↔ 0 < -𝐴))
2221biimpa 296 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 0 < -𝐴)
23 ltmul2 8999 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) → (0 < 𝐵 ↔ (-𝐴 · 0) < (-𝐴 · 𝐵)))
2420, 16, 11, 22, 23syl112anc 1275 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (-𝐴 · 0) < (-𝐴 · 𝐵)))
259, 15remulcld 8173 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℝ)
2625adantr 276 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (𝐴 · 𝐵) ∈ ℝ)
2726lt0neg1d 8658 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
2819, 24, 273bitr4d 220 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0))
292, 7, 283bitr2rd 217 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ 0 ≤ 𝐵))
30 0re 8142 . . . . . . . . . 10 0 ∈ ℝ
31 lenlt 8218 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
3230, 16, 31sylancr 414 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
3329, 32bitrd 188 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ ¬ 𝐵 < 0))
3433ifbid 3624 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = if(¬ 𝐵 < 0, -1, 1))
35 zdclt 9520 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 < 0)
363, 35mpan2 425 . . . . . . . . . 10 (𝐵 ∈ ℤ → DECID 𝐵 < 0)
37 oveq2 6008 . . . . . . . . . . . . 13 (if(𝐵 < 0, -1, 1) = -1 → (-1 · if(𝐵 < 0, -1, 1)) = (-1 · -1))
38 neg1mulneg1e1 9319 . . . . . . . . . . . . 13 (-1 · -1) = 1
3937, 38eqtrdi 2278 . . . . . . . . . . . 12 (if(𝐵 < 0, -1, 1) = -1 → (-1 · if(𝐵 < 0, -1, 1)) = 1)
40 oveq2 6008 . . . . . . . . . . . . 13 (if(𝐵 < 0, -1, 1) = 1 → (-1 · if(𝐵 < 0, -1, 1)) = (-1 · 1))
41 ax-1cn 8088 . . . . . . . . . . . . . 14 1 ∈ ℂ
4241mulm1i 8545 . . . . . . . . . . . . 13 (-1 · 1) = -1
4340, 42eqtrdi 2278 . . . . . . . . . . . 12 (if(𝐵 < 0, -1, 1) = 1 → (-1 · if(𝐵 < 0, -1, 1)) = -1)
4439, 43ifsbdc 3615 . . . . . . . . . . 11 (DECID 𝐵 < 0 → (-1 · if(𝐵 < 0, -1, 1)) = if(𝐵 < 0, 1, -1))
45 ifnotdc 3641 . . . . . . . . . . 11 (DECID 𝐵 < 0 → if(¬ 𝐵 < 0, -1, 1) = if(𝐵 < 0, 1, -1))
4644, 45eqtr4d 2265 . . . . . . . . . 10 (DECID 𝐵 < 0 → (-1 · if(𝐵 < 0, -1, 1)) = if(¬ 𝐵 < 0, -1, 1))
4736, 46syl 14 . . . . . . . . 9 (𝐵 ∈ ℤ → (-1 · if(𝐵 < 0, -1, 1)) = if(¬ 𝐵 < 0, -1, 1))
48473ad2ant2 1043 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1 · if(𝐵 < 0, -1, 1)) = if(¬ 𝐵 < 0, -1, 1))
4948ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-1 · if(𝐵 < 0, -1, 1)) = if(¬ 𝐵 < 0, -1, 1))
5034, 49eqtr4d 2265 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (-1 · if(𝐵 < 0, -1, 1)))
51 iftrue 3607 . . . . . . . 8 (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1)
5251adantl 277 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1)
5352oveq1d 6015 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (-1 · if(𝐵 < 0, -1, 1)))
5450, 53eqtr4d 2265 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
55 iffalse 3610 . . . . . . . 8 𝐴 < 0 → if(𝐴 < 0, -1, 1) = 1)
5655adantl 277 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = 1)
5756oveq1d 6015 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (1 · if(𝐵 < 0, -1, 1)))
58 neg1cn 9211 . . . . . . . . 9 -1 ∈ ℂ
5958a1i 9 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → -1 ∈ ℂ)
6041a1i 9 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 1 ∈ ℂ)
614adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐵 ∈ ℤ)
6261, 3, 35sylancl 413 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → DECID 𝐵 < 0)
6359, 60, 62ifcldcd 3640 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐵 < 0, -1, 1) ∈ ℂ)
6463mulid2d 8161 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (1 · if(𝐵 < 0, -1, 1)) = if(𝐵 < 0, -1, 1))
6515adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐵 ∈ ℝ)
66 0red 8143 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ)
679adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ)
68 simplrl 535 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ≠ 0)
6968neneqd 2421 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ¬ 𝐴 = 0)
70 simpr 110 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0)
718adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℤ)
72 ztri3or 9485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
7371, 3, 72sylancl 413 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
74 3orass 1005 . . . . . . . . . . . . . 14 ((𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴) ↔ (𝐴 < 0 ∨ (𝐴 = 0 ∨ 0 < 𝐴)))
7573, 74sylib 122 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 < 0 ∨ (𝐴 = 0 ∨ 0 < 𝐴)))
7675orcomd 734 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ((𝐴 = 0 ∨ 0 < 𝐴) ∨ 𝐴 < 0))
7770, 76ecased 1383 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 = 0 ∨ 0 < 𝐴))
7877orcomd 734 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (0 < 𝐴𝐴 = 0))
7969, 78ecased 1383 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
80 ltmul2 8999 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < (𝐴 · 0)))
8165, 66, 67, 79, 80syl112anc 1275 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < (𝐴 · 0)))
8267recnd 8171 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℂ)
8382mul01d 8535 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 · 0) = 0)
8483breq2d 4094 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ((𝐴 · 𝐵) < (𝐴 · 0) ↔ (𝐴 · 𝐵) < 0))
8581, 84bitrd 188 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < 0))
8685ifbid 3624 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐵 < 0, -1, 1) = if((𝐴 · 𝐵) < 0, -1, 1))
8757, 64, 863eqtrrd 2267 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
88 zdclt 9520 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 < 0)
898, 3, 88sylancl 413 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → DECID 𝐴 < 0)
90 exmiddc 841 . . . . . 6 (DECID 𝐴 < 0 → (𝐴 < 0 ∨ ¬ 𝐴 < 0))
9189, 90syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 < 0 ∨ ¬ 𝐴 < 0))
9254, 87, 91mpjaodan 803 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
9392adantr 276 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
94 simpr 110 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → 𝑁 < 0)
9594biantrurd 305 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → ((𝐴 · 𝐵) < 0 ↔ (𝑁 < 0 ∧ (𝐴 · 𝐵) < 0)))
9695ifbid 3624 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1))
9794biantrurd 305 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (𝐴 < 0 ↔ (𝑁 < 0 ∧ 𝐴 < 0)))
9897ifbid 3624 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if(𝐴 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
9994biantrurd 305 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (𝐵 < 0 ↔ (𝑁 < 0 ∧ 𝐵 < 0)))
10099ifbid 3624 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if(𝐵 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))
10198, 100oveq12d 6018 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
10293, 96, 1013eqtr3d 2270 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
103 simpr 110 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ 𝑁 < 0)
104103intnanrd 937 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ (𝐴 · 𝐵) < 0))
105104iffalsed 3612 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = 1)
106 1t1e1 9259 . . . 4 (1 · 1) = 1
107105, 106eqtr4di 2280 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (1 · 1))
108103intnanrd 937 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
109108iffalsed 3612 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
110103intnanrd 937 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ 𝐵 < 0))
111110iffalsed 3612 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) = 1)
112109, 111oveq12d 6018 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) = (1 · 1))
113107, 112eqtr4d 2265 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
114 simpl3 1026 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝑁 ∈ ℤ)
115 zdclt 9520 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 < 0)
116114, 3, 115sylancl 413 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → DECID 𝑁 < 0)
117 exmiddc 841 . . 3 (DECID 𝑁 < 0 → (𝑁 < 0 ∨ ¬ 𝑁 < 0))
118116, 117syl 14 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝑁 < 0 ∨ ¬ 𝑁 < 0))
119102, 113, 118mpjaodan 803 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3o 1001  w3a 1002   = wceq 1395  wcel 2200  wne 2400  ifcif 3602   class class class wbr 4082  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   · cmul 8000   < clt 8177  cle 8178  -cneg 8314  cz 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-inn 9107  df-n0 9366  df-z 9443
This theorem is referenced by:  lgsdir  15708  lgsdi  15710
  Copyright terms: Public domain W3C validator