ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem GIF version

Theorem lgsdilem 15268
Description: Lemma for lgsdi 15278 and lgsdir 15276: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdilem (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))

Proof of Theorem lgsdilem
StepHypRef Expression
1 simplrr 536 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ≠ 0)
21biantrud 304 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 ≤ 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
3 0z 9337 . . . . . . . . . . 11 0 ∈ ℤ
4 simpl2 1003 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
54adantr 276 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℤ)
6 zltlen 9404 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
73, 5, 6sylancr 414 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
8 simpl1 1002 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
98zred 9448 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℝ)
109adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
1110renegcld 8406 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
1211recnd 8055 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → -𝐴 ∈ ℂ)
1312mul01d 8419 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-𝐴 · 0) = 0)
1410recnd 8055 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
154zred 9448 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
1615adantr 276 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
1716recnd 8055 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 𝐵 ∈ ℂ)
1814, 17mulneg1d 8437 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
1913, 18breq12d 4046 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((-𝐴 · 0) < (-𝐴 · 𝐵) ↔ 0 < -(𝐴 · 𝐵)))
20 0red 8027 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
219lt0neg1d 8542 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 < 0 ↔ 0 < -𝐴))
2221biimpa 296 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → 0 < -𝐴)
23 ltmul2 8883 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) → (0 < 𝐵 ↔ (-𝐴 · 0) < (-𝐴 · 𝐵)))
2420, 16, 11, 22, 23syl112anc 1253 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (-𝐴 · 0) < (-𝐴 · 𝐵)))
259, 15remulcld 8057 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℝ)
2625adantr 276 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (𝐴 · 𝐵) ∈ ℝ)
2726lt0neg1d 8542 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
2819, 24, 273bitr4d 220 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0))
292, 7, 283bitr2rd 217 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ 0 ≤ 𝐵))
30 0re 8026 . . . . . . . . . 10 0 ∈ ℝ
31 lenlt 8102 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
3230, 16, 31sylancr 414 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
3329, 32bitrd 188 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → ((𝐴 · 𝐵) < 0 ↔ ¬ 𝐵 < 0))
3433ifbid 3582 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = if(¬ 𝐵 < 0, -1, 1))
35 zdclt 9403 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 < 0)
363, 35mpan2 425 . . . . . . . . . 10 (𝐵 ∈ ℤ → DECID 𝐵 < 0)
37 oveq2 5930 . . . . . . . . . . . . 13 (if(𝐵 < 0, -1, 1) = -1 → (-1 · if(𝐵 < 0, -1, 1)) = (-1 · -1))
38 neg1mulneg1e1 9203 . . . . . . . . . . . . 13 (-1 · -1) = 1
3937, 38eqtrdi 2245 . . . . . . . . . . . 12 (if(𝐵 < 0, -1, 1) = -1 → (-1 · if(𝐵 < 0, -1, 1)) = 1)
40 oveq2 5930 . . . . . . . . . . . . 13 (if(𝐵 < 0, -1, 1) = 1 → (-1 · if(𝐵 < 0, -1, 1)) = (-1 · 1))
41 ax-1cn 7972 . . . . . . . . . . . . . 14 1 ∈ ℂ
4241mulm1i 8429 . . . . . . . . . . . . 13 (-1 · 1) = -1
4340, 42eqtrdi 2245 . . . . . . . . . . . 12 (if(𝐵 < 0, -1, 1) = 1 → (-1 · if(𝐵 < 0, -1, 1)) = -1)
4439, 43ifsbdc 3573 . . . . . . . . . . 11 (DECID 𝐵 < 0 → (-1 · if(𝐵 < 0, -1, 1)) = if(𝐵 < 0, 1, -1))
45 ifnotdc 3598 . . . . . . . . . . 11 (DECID 𝐵 < 0 → if(¬ 𝐵 < 0, -1, 1) = if(𝐵 < 0, 1, -1))
4644, 45eqtr4d 2232 . . . . . . . . . 10 (DECID 𝐵 < 0 → (-1 · if(𝐵 < 0, -1, 1)) = if(¬ 𝐵 < 0, -1, 1))
4736, 46syl 14 . . . . . . . . 9 (𝐵 ∈ ℤ → (-1 · if(𝐵 < 0, -1, 1)) = if(¬ 𝐵 < 0, -1, 1))
48473ad2ant2 1021 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1 · if(𝐵 < 0, -1, 1)) = if(¬ 𝐵 < 0, -1, 1))
4948ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (-1 · if(𝐵 < 0, -1, 1)) = if(¬ 𝐵 < 0, -1, 1))
5034, 49eqtr4d 2232 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (-1 · if(𝐵 < 0, -1, 1)))
51 iftrue 3566 . . . . . . . 8 (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1)
5251adantl 277 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1)
5352oveq1d 5937 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (-1 · if(𝐵 < 0, -1, 1)))
5450, 53eqtr4d 2232 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
55 iffalse 3569 . . . . . . . 8 𝐴 < 0 → if(𝐴 < 0, -1, 1) = 1)
5655adantl 277 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = 1)
5756oveq1d 5937 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (1 · if(𝐵 < 0, -1, 1)))
58 neg1cn 9095 . . . . . . . . 9 -1 ∈ ℂ
5958a1i 9 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → -1 ∈ ℂ)
6041a1i 9 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 1 ∈ ℂ)
614adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐵 ∈ ℤ)
6261, 3, 35sylancl 413 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → DECID 𝐵 < 0)
6359, 60, 62ifcldcd 3597 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐵 < 0, -1, 1) ∈ ℂ)
6463mulid2d 8045 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (1 · if(𝐵 < 0, -1, 1)) = if(𝐵 < 0, -1, 1))
6515adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐵 ∈ ℝ)
66 0red 8027 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ)
679adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ)
68 simplrl 535 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ≠ 0)
6968neneqd 2388 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ¬ 𝐴 = 0)
70 simpr 110 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0)
718adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℤ)
72 ztri3or 9369 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
7371, 3, 72sylancl 413 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
74 3orass 983 . . . . . . . . . . . . . 14 ((𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴) ↔ (𝐴 < 0 ∨ (𝐴 = 0 ∨ 0 < 𝐴)))
7573, 74sylib 122 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 < 0 ∨ (𝐴 = 0 ∨ 0 < 𝐴)))
7675orcomd 730 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ((𝐴 = 0 ∨ 0 < 𝐴) ∨ 𝐴 < 0))
7770, 76ecased 1360 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 = 0 ∨ 0 < 𝐴))
7877orcomd 730 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (0 < 𝐴𝐴 = 0))
7969, 78ecased 1360 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
80 ltmul2 8883 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < (𝐴 · 0)))
8165, 66, 67, 79, 80syl112anc 1253 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < (𝐴 · 0)))
8267recnd 8055 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℂ)
8382mul01d 8419 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐴 · 0) = 0)
8483breq2d 4045 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → ((𝐴 · 𝐵) < (𝐴 · 0) ↔ (𝐴 · 𝐵) < 0))
8581, 84bitrd 188 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → (𝐵 < 0 ↔ (𝐴 · 𝐵) < 0))
8685ifbid 3582 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if(𝐵 < 0, -1, 1) = if((𝐴 · 𝐵) < 0, -1, 1))
8757, 64, 863eqtrrd 2234 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝐴 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
88 zdclt 9403 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 < 0)
898, 3, 88sylancl 413 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → DECID 𝐴 < 0)
90 exmiddc 837 . . . . . 6 (DECID 𝐴 < 0 → (𝐴 < 0 ∨ ¬ 𝐴 < 0))
9189, 90syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 < 0 ∨ ¬ 𝐴 < 0))
9254, 87, 91mpjaodan 799 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
9392adantr 276 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)))
94 simpr 110 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → 𝑁 < 0)
9594biantrurd 305 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → ((𝐴 · 𝐵) < 0 ↔ (𝑁 < 0 ∧ (𝐴 · 𝐵) < 0)))
9695ifbid 3582 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝐴 · 𝐵) < 0, -1, 1) = if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1))
9794biantrurd 305 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (𝐴 < 0 ↔ (𝑁 < 0 ∧ 𝐴 < 0)))
9897ifbid 3582 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if(𝐴 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
9994biantrurd 305 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (𝐵 < 0 ↔ (𝑁 < 0 ∧ 𝐵 < 0)))
10099ifbid 3582 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if(𝐵 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))
10198, 100oveq12d 5940 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → (if(𝐴 < 0, -1, 1) · if(𝐵 < 0, -1, 1)) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
10293, 96, 1013eqtr3d 2237 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
103 simpr 110 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ 𝑁 < 0)
104103intnanrd 933 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ (𝐴 · 𝐵) < 0))
105104iffalsed 3571 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = 1)
106 1t1e1 9143 . . . 4 (1 · 1) = 1
107105, 106eqtr4di 2247 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (1 · 1))
108103intnanrd 933 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
109108iffalsed 3571 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
110103intnanrd 933 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → ¬ (𝑁 < 0 ∧ 𝐵 < 0))
111110iffalsed 3571 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) = 1)
112109, 111oveq12d 5940 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) = (1 · 1))
113107, 112eqtr4d 2232 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ ¬ 𝑁 < 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
114 simpl3 1004 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝑁 ∈ ℤ)
115 zdclt 9403 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 < 0)
116114, 3, 115sylancl 413 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → DECID 𝑁 < 0)
117 exmiddc 837 . . 3 (DECID 𝑁 < 0 → (𝑁 < 0 ∨ ¬ 𝑁 < 0))
118116, 117syl 14 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝑁 < 0 ∨ ¬ 𝑁 < 0))
119102, 113, 118mpjaodan 799 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979  w3a 980   = wceq 1364  wcel 2167  wne 2367  ifcif 3561   class class class wbr 4033  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   · cmul 7884   < clt 8061  cle 8062  -cneg 8198  cz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  lgsdir  15276  lgsdi  15278
  Copyright terms: Public domain W3C validator