ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsubeq4 GIF version

Theorem addsubeq4 7794
Description: Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
addsubeq4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶𝐴) = (𝐵𝐷)))

Proof of Theorem addsubeq4
StepHypRef Expression
1 eqcom 2097 . . 3 ((𝐶𝐴) = (𝐵𝐷) ↔ (𝐵𝐷) = (𝐶𝐴))
2 subcl 7778 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
32ancoms 265 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐴) ∈ ℂ)
4 subadd 7782 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
543expa 1146 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
65ancoms 265 . . . . 5 (((𝐶𝐴) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
73, 6sylan 278 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
87an4s 556 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵𝐷) = (𝐶𝐴) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
91, 8syl5bb 191 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶𝐴) = (𝐵𝐷) ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
10 addcom 7716 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
1110adantl 272 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
1211oveq1d 5705 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = ((𝐷 + 𝐶) − 𝐴))
13 addsubass 7789 . . . . . . . 8 ((𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
14133com12 1150 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
15143expa 1146 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
1615ancoms 265 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶𝐴)))
1712, 16eqtrd 2127 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = (𝐷 + (𝐶𝐴)))
1817adantlr 462 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = (𝐷 + (𝐶𝐴)))
1918eqeq1d 2103 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐷 + (𝐶𝐴)) = 𝐵))
20 addcl 7564 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ)
21 subadd 7782 . . . . 5 (((𝐶 + 𝐷) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
22213expb 1147 . . . 4 (((𝐶 + 𝐷) ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
2322ancoms 265 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 + 𝐷) ∈ ℂ) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
2420, 23sylan2 281 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
259, 19, 243bitr2rd 216 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶𝐴) = (𝐵𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445  (class class class)co 5690  cc 7445   + caddc 7450  cmin 7750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-setind 4381  ax-resscn 7534  ax-1cn 7535  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-sub 7752
This theorem is referenced by:  subcan  7834  addsubeq4d  7941
  Copyright terms: Public domain W3C validator