Proof of Theorem addsubeq4
Step | Hyp | Ref
| Expression |
1 | | eqcom 2172 |
. . 3
⊢ ((𝐶 − 𝐴) = (𝐵 − 𝐷) ↔ (𝐵 − 𝐷) = (𝐶 − 𝐴)) |
2 | | subcl 8118 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶 − 𝐴) ∈ ℂ) |
3 | 2 | ancoms 266 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 − 𝐴) ∈ ℂ) |
4 | | subadd 8122 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐷) = (𝐶 − 𝐴) ↔ (𝐷 + (𝐶 − 𝐴)) = 𝐵)) |
5 | 4 | 3expa 1198 |
. . . . . 6
⊢ (((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐷) = (𝐶 − 𝐴) ↔ (𝐷 + (𝐶 − 𝐴)) = 𝐵)) |
6 | 5 | ancoms 266 |
. . . . 5
⊢ (((𝐶 − 𝐴) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 − 𝐷) = (𝐶 − 𝐴) ↔ (𝐷 + (𝐶 − 𝐴)) = 𝐵)) |
7 | 3, 6 | sylan 281 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 − 𝐷) = (𝐶 − 𝐴) ↔ (𝐷 + (𝐶 − 𝐴)) = 𝐵)) |
8 | 7 | an4s 583 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 − 𝐷) = (𝐶 − 𝐴) ↔ (𝐷 + (𝐶 − 𝐴)) = 𝐵)) |
9 | 1, 8 | syl5bb 191 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 − 𝐴) = (𝐵 − 𝐷) ↔ (𝐷 + (𝐶 − 𝐴)) = 𝐵)) |
10 | | addcom 8056 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
11 | 10 | adantl 275 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
12 | 11 | oveq1d 5868 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = ((𝐷 + 𝐶) − 𝐴)) |
13 | | addsubass 8129 |
. . . . . . . 8
⊢ ((𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶 − 𝐴))) |
14 | 13 | 3com12 1202 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶 − 𝐴))) |
15 | 14 | 3expa 1198 |
. . . . . 6
⊢ (((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶 − 𝐴))) |
16 | 15 | ancoms 266 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐷 + 𝐶) − 𝐴) = (𝐷 + (𝐶 − 𝐴))) |
17 | 12, 16 | eqtrd 2203 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = (𝐷 + (𝐶 − 𝐴))) |
18 | 17 | adantlr 474 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐶 + 𝐷) − 𝐴) = (𝐷 + (𝐶 − 𝐴))) |
19 | 18 | eqeq1d 2179 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) →
(((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐷 + (𝐶 − 𝐴)) = 𝐵)) |
20 | | addcl 7899 |
. . 3
⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ) |
21 | | subadd 8122 |
. . . . 5
⊢ (((𝐶 + 𝐷) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷))) |
22 | 21 | 3expb 1199 |
. . . 4
⊢ (((𝐶 + 𝐷) ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷))) |
23 | 22 | ancoms 266 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 + 𝐷) ∈ ℂ) → (((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷))) |
24 | 20, 23 | sylan2 284 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) →
(((𝐶 + 𝐷) − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷))) |
25 | 9, 19, 24 | 3bitr2rd 216 |
1
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶 − 𝐴) = (𝐵 − 𝐷))) |