Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0lt10b | GIF version |
Description: A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
nn0lt10b | ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 9144 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 0re 7920 | . . . 4 ⊢ 0 ∈ ℝ | |
3 | letri3 8000 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) | |
4 | 2, 3 | mpan2 423 | . . 3 ⊢ (𝑁 ∈ ℝ → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) |
5 | 1, 4 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) |
6 | nn0ge0 9160 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
7 | 6 | biantrud 302 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) |
8 | nn0z 9232 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
9 | 0z 9223 | . . . . 5 ⊢ 0 ∈ ℤ | |
10 | zleltp1 9267 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1))) | |
11 | 9, 10 | mpan2 423 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1))) |
12 | 0p1e1 8992 | . . . . 5 ⊢ (0 + 1) = 1 | |
13 | 12 | breq2i 3997 | . . . 4 ⊢ (𝑁 < (0 + 1) ↔ 𝑁 < 1) |
14 | 11, 13 | bitrdi 195 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 ≤ 0 ↔ 𝑁 < 1)) |
15 | 8, 14 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 < 1)) |
16 | 5, 7, 15 | 3bitr2rd 216 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 < clt 7954 ≤ cle 7955 ℕ0cn0 9135 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: nn0lt2 9293 nn0le2is012 9294 fz1n 10000 |
Copyright terms: Public domain | W3C validator |