![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0lt10b | GIF version |
Description: A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
nn0lt10b | ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 9252 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 0re 8021 | . . . 4 ⊢ 0 ∈ ℝ | |
3 | letri3 8102 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) | |
4 | 2, 3 | mpan2 425 | . . 3 ⊢ (𝑁 ∈ ℝ → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) |
5 | 1, 4 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) |
6 | nn0ge0 9268 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
7 | 6 | biantrud 304 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) |
8 | nn0z 9340 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
9 | 0z 9331 | . . . . 5 ⊢ 0 ∈ ℤ | |
10 | zleltp1 9375 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1))) | |
11 | 9, 10 | mpan2 425 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1))) |
12 | 0p1e1 9098 | . . . . 5 ⊢ (0 + 1) = 1 | |
13 | 12 | breq2i 4038 | . . . 4 ⊢ (𝑁 < (0 + 1) ↔ 𝑁 < 1) |
14 | 11, 13 | bitrdi 196 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 ≤ 0 ↔ 𝑁 < 1)) |
15 | 8, 14 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 < 1)) |
16 | 5, 7, 15 | 3bitr2rd 217 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 < clt 8056 ≤ cle 8057 ℕ0cn0 9243 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 |
This theorem is referenced by: nn0lt2 9401 nn0le2is012 9402 fz1n 10113 |
Copyright terms: Public domain | W3C validator |