| Step | Hyp | Ref
 | Expression | 
| 1 |   | frec2uzltd.b | 
. 2
⊢ (𝜑 → 𝐵 ∈ ω) | 
| 2 |   | eleq2 2260 | 
. . . . 5
⊢ (𝑧 = ∅ → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ ∅)) | 
| 3 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = ∅ → (𝐺‘𝑧) = (𝐺‘∅)) | 
| 4 | 3 | breq2d 4045 | 
. . . . 5
⊢ (𝑧 = ∅ → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘∅))) | 
| 5 | 2, 4 | imbi12d 234 | 
. . . 4
⊢ (𝑧 = ∅ → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅)))) | 
| 6 | 5 | imbi2d 230 | 
. . 3
⊢ (𝑧 = ∅ → ((𝜑 → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝜑 → (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅))))) | 
| 7 |   | eleq2 2260 | 
. . . . 5
⊢ (𝑧 = 𝑦 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑦)) | 
| 8 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝐺‘𝑧) = (𝐺‘𝑦)) | 
| 9 | 8 | breq2d 4045 | 
. . . . 5
⊢ (𝑧 = 𝑦 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘𝑦))) | 
| 10 | 7, 9 | imbi12d 234 | 
. . . 4
⊢ (𝑧 = 𝑦 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)))) | 
| 11 | 10 | imbi2d 230 | 
. . 3
⊢ (𝑧 = 𝑦 → ((𝜑 → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝜑 → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))))) | 
| 12 |   | eleq2 2260 | 
. . . . 5
⊢ (𝑧 = suc 𝑦 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ suc 𝑦)) | 
| 13 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = suc 𝑦 → (𝐺‘𝑧) = (𝐺‘suc 𝑦)) | 
| 14 | 13 | breq2d 4045 | 
. . . . 5
⊢ (𝑧 = suc 𝑦 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘suc 𝑦))) | 
| 15 | 12, 14 | imbi12d 234 | 
. . . 4
⊢ (𝑧 = suc 𝑦 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) | 
| 16 | 15 | imbi2d 230 | 
. . 3
⊢ (𝑧 = suc 𝑦 → ((𝜑 → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝜑 → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) | 
| 17 |   | eleq2 2260 | 
. . . . 5
⊢ (𝑧 = 𝐵 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝐵)) | 
| 18 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝐺‘𝑧) = (𝐺‘𝐵)) | 
| 19 | 18 | breq2d 4045 | 
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) | 
| 20 | 17, 19 | imbi12d 234 | 
. . . 4
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵)))) | 
| 21 | 20 | imbi2d 230 | 
. . 3
⊢ (𝑧 = 𝐵 → ((𝜑 → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))))) | 
| 22 |   | noel 3454 | 
. . . . 5
⊢  ¬
𝐴 ∈
∅ | 
| 23 | 22 | pm2.21i 647 | 
. . . 4
⊢ (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅)) | 
| 24 | 23 | a1i 9 | 
. . 3
⊢ (𝜑 → (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅))) | 
| 25 |   | id 19 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))) | 
| 26 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝐴 = 𝑦 → (𝐺‘𝐴) = (𝐺‘𝑦)) | 
| 27 | 26 | a1i 9 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 = 𝑦 → (𝐺‘𝐴) = (𝐺‘𝑦))) | 
| 28 | 25, 27 | orim12d 787 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) | 
| 29 |   | elsuc2g 4440 | 
. . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦))) | 
| 30 | 29 | bicomd 141 | 
. . . . . . . 8
⊢ (𝑦 ∈ ω → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦)) | 
| 31 | 30 | adantr 276 | 
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧ 𝜑) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦)) | 
| 32 |   | frec2uz.1 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℤ) | 
| 33 | 32 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧ 𝜑) → 𝐶 ∈ ℤ) | 
| 34 |   | frec2uz.2 | 
. . . . . . . . . 10
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | 
| 35 |   | simpl 109 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧ 𝜑) → 𝑦 ∈ ω) | 
| 36 | 33, 34, 35 | frec2uzsucd 10493 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑦) = ((𝐺‘𝑦) + 1)) | 
| 37 | 36 | breq2d 4045 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺‘𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) | 
| 38 |   | frec2uzzd.a | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ω) | 
| 39 | 38 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧ 𝜑) → 𝐴 ∈ ω) | 
| 40 | 33, 34, 39 | frec2uzuzd 10494 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) | 
| 41 | 33, 34, 35 | frec2uzuzd 10494 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) | 
| 42 |   | eluzelz 9610 | 
. . . . . . . . . 10
⊢ ((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐴) ∈ ℤ) | 
| 43 |   | eluzelz 9610 | 
. . . . . . . . . 10
⊢ ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑦) ∈ ℤ) | 
| 44 |   | zleltp1 9381 | 
. . . . . . . . . 10
⊢ (((𝐺‘𝐴) ∈ ℤ ∧ (𝐺‘𝑦) ∈ ℤ) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) | 
| 45 | 42, 43, 44 | syl2an 289 | 
. . . . . . . . 9
⊢ (((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) ∧ (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) | 
| 46 | 40, 41, 45 | syl2anc 411 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) | 
| 47 | 33, 34, 39 | frec2uzzd 10492 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘𝐴) ∈ ℤ) | 
| 48 | 33, 34, 35 | frec2uzzd 10492 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘𝑦) ∈ ℤ) | 
| 49 |   | zleloe 9373 | 
. . . . . . . . 9
⊢ (((𝐺‘𝐴) ∈ ℤ ∧ (𝐺‘𝑦) ∈ ℤ) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) | 
| 50 | 47, 48, 49 | syl2anc 411 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) | 
| 51 | 37, 46, 50 | 3bitr2rd 217 | 
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)) ↔ (𝐺‘𝐴) < (𝐺‘suc 𝑦))) | 
| 52 | 31, 51 | imbi12d 234 | 
. . . . . 6
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) | 
| 53 | 28, 52 | imbitrid 154 | 
. . . . 5
⊢ ((𝑦 ∈ ω ∧ 𝜑) → ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) | 
| 54 | 53 | ex 115 | 
. . . 4
⊢ (𝑦 ∈ ω → (𝜑 → ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) | 
| 55 | 54 | a2d 26 | 
. . 3
⊢ (𝑦 ∈ ω → ((𝜑 → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))) → (𝜑 → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) | 
| 56 | 6, 11, 16, 21, 24, 55 | finds 4636 | 
. 2
⊢ (𝐵 ∈ ω → (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵)))) | 
| 57 | 1, 56 | mpcom 36 | 
1
⊢ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |