ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzltd GIF version

Theorem frec2uzltd 9713
Description: Less-than relation for 𝐺 (see frec2uz0d 9709). (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzzd.a (𝜑𝐴 ∈ ω)
frec2uzltd.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
frec2uzltd (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzltd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uzltd.b . 2 (𝜑𝐵 ∈ ω)
2 eleq2 2148 . . . . 5 (𝑧 = ∅ → (𝐴𝑧𝐴 ∈ ∅))
3 fveq2 5256 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
43breq2d 3826 . . . . 5 (𝑧 = ∅ → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘∅)))
52, 4imbi12d 232 . . . 4 (𝑧 = ∅ → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))))
65imbi2d 228 . . 3 (𝑧 = ∅ → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))))
7 eleq2 2148 . . . . 5 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
8 fveq2 5256 . . . . . 6 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
98breq2d 3826 . . . . 5 (𝑧 = 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝑦)))
107, 9imbi12d 232 . . . 4 (𝑧 = 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))))
1110imbi2d 228 . . 3 (𝑧 = 𝑦 → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))))
12 eleq2 2148 . . . . 5 (𝑧 = suc 𝑦 → (𝐴𝑧𝐴 ∈ suc 𝑦))
13 fveq2 5256 . . . . . 6 (𝑧 = suc 𝑦 → (𝐺𝑧) = (𝐺‘suc 𝑦))
1413breq2d 3826 . . . . 5 (𝑧 = suc 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
1512, 14imbi12d 232 . . . 4 (𝑧 = suc 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
1615imbi2d 228 . . 3 (𝑧 = suc 𝑦 → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
17 eleq2 2148 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
18 fveq2 5256 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
1918breq2d 3826 . . . . 5 (𝑧 = 𝐵 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝐵)))
2017, 19imbi12d 232 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
2120imbi2d 228 . . 3 (𝑧 = 𝐵 → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))))
22 noel 3276 . . . . 5 ¬ 𝐴 ∈ ∅
2322pm2.21i 608 . . . 4 (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))
2423a1i 9 . . 3 (𝜑 → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))
25 id 19 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))
26 fveq2 5256 . . . . . . . 8 (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦))
2726a1i 9 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦)))
2825, 27orim12d 733 . . . . . 6 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → ((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
29 elsuc2g 4199 . . . . . . . . 9 (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦)))
3029bicomd 139 . . . . . . . 8 (𝑦 ∈ ω → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
3130adantr 270 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
32 frec2uz.1 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
3332adantl 271 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝜑) → 𝐶 ∈ ℤ)
34 frec2uz.2 . . . . . . . . . 10 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
35 simpl 107 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝜑) → 𝑦 ∈ ω)
3633, 34, 35frec2uzsucd 9711 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑦) = ((𝐺𝑦) + 1))
3736breq2d 3826 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
38 frec2uzzd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ω)
3938adantl 271 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝜑) → 𝐴 ∈ ω)
4033, 34, 39frec2uzuzd 9712 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝐴) ∈ (ℤ𝐶))
4133, 34, 35frec2uzuzd 9712 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝑦) ∈ (ℤ𝐶))
42 eluzelz 8937 . . . . . . . . . 10 ((𝐺𝐴) ∈ (ℤ𝐶) → (𝐺𝐴) ∈ ℤ)
43 eluzelz 8937 . . . . . . . . . 10 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
44 zleltp1 8715 . . . . . . . . . 10 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4542, 43, 44syl2an 283 . . . . . . . . 9 (((𝐺𝐴) ∈ (ℤ𝐶) ∧ (𝐺𝑦) ∈ (ℤ𝐶)) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4640, 41, 45syl2anc 403 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4733, 34, 39frec2uzzd 9710 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝐴) ∈ ℤ)
4833, 34, 35frec2uzzd 9710 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝑦) ∈ ℤ)
49 zleloe 8707 . . . . . . . . 9 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
5047, 48, 49syl2anc 403 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
5137, 46, 503bitr2rd 215 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝜑) → (((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦)) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
5231, 51imbi12d 232 . . . . . 6 ((𝑦 ∈ ω ∧ 𝜑) → (((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5328, 52syl5ib 152 . . . . 5 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5453ex 113 . . . 4 (𝑦 ∈ ω → (𝜑 → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
5554a2d 26 . . 3 (𝑦 ∈ ω → ((𝜑 → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))) → (𝜑 → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
566, 11, 16, 21, 24, 55finds 4381 . 2 (𝐵 ∈ ω → (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
571, 56mpcom 36 1 (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662   = wceq 1287  wcel 1436  c0 3272   class class class wbr 3814  cmpt 3868  suc csuc 4159  ωcom 4371  cfv 4972  (class class class)co 5594  freccfrec 6090  1c1 7272   + caddc 7274   < clt 7443  cle 7444  cz 8660  cuz 8928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3922  ax-sep 3925  ax-nul 3933  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-iinf 4369  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-addcom 7366  ax-addass 7368  ax-distr 7370  ax-i2m1 7371  ax-0lt1 7372  ax-0id 7374  ax-rnegex 7375  ax-cnre 7377  ax-pre-ltirr 7378  ax-pre-ltwlin 7379  ax-pre-lttrn 7380  ax-pre-ltadd 7382
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-tr 3905  df-id 4087  df-iord 4160  df-on 4162  df-ilim 4163  df-suc 4165  df-iom 4372  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-f1 4977  df-fo 4978  df-f1o 4979  df-fv 4980  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-recs 6005  df-frec 6091  df-pnf 7445  df-mnf 7446  df-xr 7447  df-ltxr 7448  df-le 7449  df-sub 7576  df-neg 7577  df-inn 8335  df-n0 8584  df-z 8661  df-uz 8929
This theorem is referenced by:  frec2uzlt2d  9714  frec2uzf1od  9716
  Copyright terms: Public domain W3C validator