Step | Hyp | Ref
| Expression |
1 | | frec2uzltd.b |
. 2
⊢ (𝜑 → 𝐵 ∈ ω) |
2 | | eleq2 2234 |
. . . . 5
⊢ (𝑧 = ∅ → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ ∅)) |
3 | | fveq2 5496 |
. . . . . 6
⊢ (𝑧 = ∅ → (𝐺‘𝑧) = (𝐺‘∅)) |
4 | 3 | breq2d 4001 |
. . . . 5
⊢ (𝑧 = ∅ → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘∅))) |
5 | 2, 4 | imbi12d 233 |
. . . 4
⊢ (𝑧 = ∅ → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅)))) |
6 | 5 | imbi2d 229 |
. . 3
⊢ (𝑧 = ∅ → ((𝜑 → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝜑 → (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅))))) |
7 | | eleq2 2234 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑦)) |
8 | | fveq2 5496 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝐺‘𝑧) = (𝐺‘𝑦)) |
9 | 8 | breq2d 4001 |
. . . . 5
⊢ (𝑧 = 𝑦 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘𝑦))) |
10 | 7, 9 | imbi12d 233 |
. . . 4
⊢ (𝑧 = 𝑦 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)))) |
11 | 10 | imbi2d 229 |
. . 3
⊢ (𝑧 = 𝑦 → ((𝜑 → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝜑 → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))))) |
12 | | eleq2 2234 |
. . . . 5
⊢ (𝑧 = suc 𝑦 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ suc 𝑦)) |
13 | | fveq2 5496 |
. . . . . 6
⊢ (𝑧 = suc 𝑦 → (𝐺‘𝑧) = (𝐺‘suc 𝑦)) |
14 | 13 | breq2d 4001 |
. . . . 5
⊢ (𝑧 = suc 𝑦 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘suc 𝑦))) |
15 | 12, 14 | imbi12d 233 |
. . . 4
⊢ (𝑧 = suc 𝑦 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) |
16 | 15 | imbi2d 229 |
. . 3
⊢ (𝑧 = suc 𝑦 → ((𝜑 → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝜑 → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) |
17 | | eleq2 2234 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝐵)) |
18 | | fveq2 5496 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝐺‘𝑧) = (𝐺‘𝐵)) |
19 | 18 | breq2d 4001 |
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
20 | 17, 19 | imbi12d 233 |
. . . 4
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵)))) |
21 | 20 | imbi2d 229 |
. . 3
⊢ (𝑧 = 𝐵 → ((𝜑 → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))))) |
22 | | noel 3418 |
. . . . 5
⊢ ¬
𝐴 ∈
∅ |
23 | 22 | pm2.21i 641 |
. . . 4
⊢ (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅)) |
24 | 23 | a1i 9 |
. . 3
⊢ (𝜑 → (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅))) |
25 | | id 19 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))) |
26 | | fveq2 5496 |
. . . . . . . 8
⊢ (𝐴 = 𝑦 → (𝐺‘𝐴) = (𝐺‘𝑦)) |
27 | 26 | a1i 9 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 = 𝑦 → (𝐺‘𝐴) = (𝐺‘𝑦))) |
28 | 25, 27 | orim12d 781 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) |
29 | | elsuc2g 4390 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦))) |
30 | 29 | bicomd 140 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦)) |
31 | 30 | adantr 274 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧ 𝜑) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦)) |
32 | | frec2uz.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℤ) |
33 | 32 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧ 𝜑) → 𝐶 ∈ ℤ) |
34 | | frec2uz.2 |
. . . . . . . . . 10
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
35 | | simpl 108 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧ 𝜑) → 𝑦 ∈ ω) |
36 | 33, 34, 35 | frec2uzsucd 10357 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑦) = ((𝐺‘𝑦) + 1)) |
37 | 36 | breq2d 4001 |
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺‘𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) |
38 | | frec2uzzd.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ω) |
39 | 38 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧ 𝜑) → 𝐴 ∈ ω) |
40 | 33, 34, 39 | frec2uzuzd 10358 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
41 | 33, 34, 35 | frec2uzuzd 10358 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) |
42 | | eluzelz 9496 |
. . . . . . . . . 10
⊢ ((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐴) ∈ ℤ) |
43 | | eluzelz 9496 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑦) ∈ ℤ) |
44 | | zleltp1 9267 |
. . . . . . . . . 10
⊢ (((𝐺‘𝐴) ∈ ℤ ∧ (𝐺‘𝑦) ∈ ℤ) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) |
45 | 42, 43, 44 | syl2an 287 |
. . . . . . . . 9
⊢ (((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) ∧ (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) |
46 | 40, 41, 45 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) |
47 | 33, 34, 39 | frec2uzzd 10356 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘𝐴) ∈ ℤ) |
48 | 33, 34, 35 | frec2uzzd 10356 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘𝑦) ∈ ℤ) |
49 | | zleloe 9259 |
. . . . . . . . 9
⊢ (((𝐺‘𝐴) ∈ ℤ ∧ (𝐺‘𝑦) ∈ ℤ) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) |
50 | 47, 48, 49 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) |
51 | 37, 46, 50 | 3bitr2rd 216 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)) ↔ (𝐺‘𝐴) < (𝐺‘suc 𝑦))) |
52 | 31, 51 | imbi12d 233 |
. . . . . 6
⊢ ((𝑦 ∈ ω ∧ 𝜑) → (((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) |
53 | 28, 52 | syl5ib 153 |
. . . . 5
⊢ ((𝑦 ∈ ω ∧ 𝜑) → ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) |
54 | 53 | ex 114 |
. . . 4
⊢ (𝑦 ∈ ω → (𝜑 → ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) |
55 | 54 | a2d 26 |
. . 3
⊢ (𝑦 ∈ ω → ((𝜑 → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))) → (𝜑 → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) |
56 | 6, 11, 16, 21, 24, 55 | finds 4584 |
. 2
⊢ (𝐵 ∈ ω → (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵)))) |
57 | 1, 56 | mpcom 36 |
1
⊢ (𝜑 → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |