Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iooref1o GIF version

Theorem iooref1o 15765
Description: A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
Hypothesis
Ref Expression
iooref1o.f 𝐹 = (𝑥 ∈ ℝ ↦ (1 / (1 + (exp‘𝑥))))
Assertion
Ref Expression
iooref1o 𝐹:ℝ–1-1-onto→(0(,)1)

Proof of Theorem iooref1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iooref1o.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ (1 / (1 + (exp‘𝑥))))
2 1rp 9749 . . . . . . . . 9 1 ∈ ℝ+
32a1i 9 . . . . . . . 8 (𝑥 ∈ ℝ → 1 ∈ ℝ+)
4 rpefcl 11867 . . . . . . . 8 (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ+)
53, 4rpaddcld 9804 . . . . . . 7 (𝑥 ∈ ℝ → (1 + (exp‘𝑥)) ∈ ℝ+)
65rpreccld 9799 . . . . . 6 (𝑥 ∈ ℝ → (1 / (1 + (exp‘𝑥))) ∈ ℝ+)
76rpred 9788 . . . . 5 (𝑥 ∈ ℝ → (1 / (1 + (exp‘𝑥))) ∈ ℝ)
86rpgt0d 9791 . . . . 5 (𝑥 ∈ ℝ → 0 < (1 / (1 + (exp‘𝑥))))
9 1red 8058 . . . . . . 7 (𝑥 ∈ ℝ → 1 ∈ ℝ)
109, 4ltaddrpd 9822 . . . . . 6 (𝑥 ∈ ℝ → 1 < (1 + (exp‘𝑥)))
115recgt1d 9803 . . . . . 6 (𝑥 ∈ ℝ → (1 < (1 + (exp‘𝑥)) ↔ (1 / (1 + (exp‘𝑥))) < 1))
1210, 11mpbid 147 . . . . 5 (𝑥 ∈ ℝ → (1 / (1 + (exp‘𝑥))) < 1)
13 0xr 8090 . . . . . 6 0 ∈ ℝ*
14 1re 8042 . . . . . . 7 1 ∈ ℝ
1514rexri 8101 . . . . . 6 1 ∈ ℝ*
16 elioo2 10013 . . . . . 6 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / (1 + (exp‘𝑥))) ∈ (0(,)1) ↔ ((1 / (1 + (exp‘𝑥))) ∈ ℝ ∧ 0 < (1 / (1 + (exp‘𝑥))) ∧ (1 / (1 + (exp‘𝑥))) < 1)))
1713, 15, 16mp2an 426 . . . . 5 ((1 / (1 + (exp‘𝑥))) ∈ (0(,)1) ↔ ((1 / (1 + (exp‘𝑥))) ∈ ℝ ∧ 0 < (1 / (1 + (exp‘𝑥))) ∧ (1 / (1 + (exp‘𝑥))) < 1))
187, 8, 12, 17syl3anbrc 1183 . . . 4 (𝑥 ∈ ℝ → (1 / (1 + (exp‘𝑥))) ∈ (0(,)1))
1918adantl 277 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ) → (1 / (1 + (exp‘𝑥))) ∈ (0(,)1))
20 elioore 10004 . . . . . . . . . 10 (𝑦 ∈ (0(,)1) → 𝑦 ∈ ℝ)
21 eliooord 10020 . . . . . . . . . . 11 (𝑦 ∈ (0(,)1) → (0 < 𝑦𝑦 < 1))
2221simpld 112 . . . . . . . . . 10 (𝑦 ∈ (0(,)1) → 0 < 𝑦)
2320, 22elrpd 9785 . . . . . . . . 9 (𝑦 ∈ (0(,)1) → 𝑦 ∈ ℝ+)
2423rpreccld 9799 . . . . . . . 8 (𝑦 ∈ (0(,)1) → (1 / 𝑦) ∈ ℝ+)
2524rpred 9788 . . . . . . 7 (𝑦 ∈ (0(,)1) → (1 / 𝑦) ∈ ℝ)
26 1red 8058 . . . . . . 7 (𝑦 ∈ (0(,)1) → 1 ∈ ℝ)
2725, 26resubcld 8424 . . . . . 6 (𝑦 ∈ (0(,)1) → ((1 / 𝑦) − 1) ∈ ℝ)
2821simprd 114 . . . . . . . 8 (𝑦 ∈ (0(,)1) → 𝑦 < 1)
2923reclt1d 9802 . . . . . . . 8 (𝑦 ∈ (0(,)1) → (𝑦 < 1 ↔ 1 < (1 / 𝑦)))
3028, 29mpbid 147 . . . . . . 7 (𝑦 ∈ (0(,)1) → 1 < (1 / 𝑦))
3126, 25posdifd 8576 . . . . . . 7 (𝑦 ∈ (0(,)1) → (1 < (1 / 𝑦) ↔ 0 < ((1 / 𝑦) − 1)))
3230, 31mpbid 147 . . . . . 6 (𝑦 ∈ (0(,)1) → 0 < ((1 / 𝑦) − 1))
3327, 32elrpd 9785 . . . . 5 (𝑦 ∈ (0(,)1) → ((1 / 𝑦) − 1) ∈ ℝ+)
3433relogcld 15202 . . . 4 (𝑦 ∈ (0(,)1) → (log‘((1 / 𝑦) − 1)) ∈ ℝ)
3534adantl 277 . . 3 ((⊤ ∧ 𝑦 ∈ (0(,)1)) → (log‘((1 / 𝑦) − 1)) ∈ ℝ)
36 1cnd 8059 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → 1 ∈ ℂ)
374adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (exp‘𝑥) ∈ ℝ+)
3837rpcnd 9790 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (exp‘𝑥) ∈ ℂ)
3936, 38addcld 8063 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (1 + (exp‘𝑥)) ∈ ℂ)
4023adantl 277 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
4140rpcnd 9790 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → 𝑦 ∈ ℂ)
4240rpap0d 9794 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → 𝑦 # 0)
4336, 39, 41, 42divmulap2d 8868 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((1 / 𝑦) = (1 + (exp‘𝑥)) ↔ 1 = (𝑦 · (1 + (exp‘𝑥)))))
4424adantl 277 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (1 / 𝑦) ∈ ℝ+)
4544rpcnd 9790 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (1 / 𝑦) ∈ ℂ)
4636, 38, 45addrsub 8414 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((1 + (exp‘𝑥)) = (1 / 𝑦) ↔ (exp‘𝑥) = ((1 / 𝑦) − 1)))
4733adantl 277 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((1 / 𝑦) − 1) ∈ ℝ+)
4847reeflogd 15203 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (exp‘(log‘((1 / 𝑦) − 1))) = ((1 / 𝑦) − 1))
4948eqeq2d 2208 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((exp‘𝑥) = (exp‘(log‘((1 / 𝑦) − 1))) ↔ (exp‘𝑥) = ((1 / 𝑦) − 1)))
50 reef11 11881 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (log‘((1 / 𝑦) − 1)) ∈ ℝ) → ((exp‘𝑥) = (exp‘(log‘((1 / 𝑦) − 1))) ↔ 𝑥 = (log‘((1 / 𝑦) − 1))))
5134, 50sylan2 286 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((exp‘𝑥) = (exp‘(log‘((1 / 𝑦) − 1))) ↔ 𝑥 = (log‘((1 / 𝑦) − 1))))
5246, 49, 513bitr2rd 217 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (𝑥 = (log‘((1 / 𝑦) − 1)) ↔ (1 + (exp‘𝑥)) = (1 / 𝑦)))
53 eqcom 2198 . . . . . . 7 ((1 + (exp‘𝑥)) = (1 / 𝑦) ↔ (1 / 𝑦) = (1 + (exp‘𝑥)))
5452, 53bitrdi 196 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (𝑥 = (log‘((1 / 𝑦) − 1)) ↔ (1 / 𝑦) = (1 + (exp‘𝑥))))
555adantr 276 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (1 + (exp‘𝑥)) ∈ ℝ+)
5655rpap0d 9794 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (1 + (exp‘𝑥)) # 0)
5736, 41, 39, 56divmulap3d 8869 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((1 / (1 + (exp‘𝑥))) = 𝑦 ↔ 1 = (𝑦 · (1 + (exp‘𝑥)))))
5843, 54, 573bitr4d 220 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (𝑥 = (log‘((1 / 𝑦) − 1)) ↔ (1 / (1 + (exp‘𝑥))) = 𝑦))
59 eqcom 2198 . . . . 5 ((1 / (1 + (exp‘𝑥))) = 𝑦𝑦 = (1 / (1 + (exp‘𝑥))))
6058, 59bitrdi 196 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (𝑥 = (log‘((1 / 𝑦) − 1)) ↔ 𝑦 = (1 / (1 + (exp‘𝑥)))))
6160adantl 277 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1))) → (𝑥 = (log‘((1 / 𝑦) − 1)) ↔ 𝑦 = (1 / (1 + (exp‘𝑥)))))
621, 19, 35, 61f1o2d 6132 . 2 (⊤ → 𝐹:ℝ–1-1-onto→(0(,)1))
6362mptru 1373 1 𝐹:ℝ–1-1-onto→(0(,)1)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wtru 1365  wcel 2167   class class class wbr 4034  cmpt 4095  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901  *cxr 8077   < clt 8078  cmin 8214   / cdiv 8716  +crp 9745  (,)cioo 9980  expce 11824  logclog 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-pre-suploc 8017  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-ioo 9984  df-ico 9986  df-icc 9987  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-bc 10857  df-ihash 10885  df-shft 10997  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-e 11831  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-ntr 14416  df-cn 14508  df-cnp 14509  df-tx 14573  df-cncf 14891  df-limced 14976  df-dvap 14977  df-relog 15178
This theorem is referenced by:  iooreen  15766
  Copyright terms: Public domain W3C validator