Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iooref1o GIF version

Theorem iooref1o 15261
Description: A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
Hypothesis
Ref Expression
iooref1o.f 𝐹 = (𝑥 ∈ ℝ ↦ (1 / (1 + (exp‘𝑥))))
Assertion
Ref Expression
iooref1o 𝐹:ℝ–1-1-onto→(0(,)1)

Proof of Theorem iooref1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iooref1o.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ (1 / (1 + (exp‘𝑥))))
2 1rp 9689 . . . . . . . . 9 1 ∈ ℝ+
32a1i 9 . . . . . . . 8 (𝑥 ∈ ℝ → 1 ∈ ℝ+)
4 rpefcl 11728 . . . . . . . 8 (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ+)
53, 4rpaddcld 9744 . . . . . . 7 (𝑥 ∈ ℝ → (1 + (exp‘𝑥)) ∈ ℝ+)
65rpreccld 9739 . . . . . 6 (𝑥 ∈ ℝ → (1 / (1 + (exp‘𝑥))) ∈ ℝ+)
76rpred 9728 . . . . 5 (𝑥 ∈ ℝ → (1 / (1 + (exp‘𝑥))) ∈ ℝ)
86rpgt0d 9731 . . . . 5 (𝑥 ∈ ℝ → 0 < (1 / (1 + (exp‘𝑥))))
9 1red 8003 . . . . . . 7 (𝑥 ∈ ℝ → 1 ∈ ℝ)
109, 4ltaddrpd 9762 . . . . . 6 (𝑥 ∈ ℝ → 1 < (1 + (exp‘𝑥)))
115recgt1d 9743 . . . . . 6 (𝑥 ∈ ℝ → (1 < (1 + (exp‘𝑥)) ↔ (1 / (1 + (exp‘𝑥))) < 1))
1210, 11mpbid 147 . . . . 5 (𝑥 ∈ ℝ → (1 / (1 + (exp‘𝑥))) < 1)
13 0xr 8035 . . . . . 6 0 ∈ ℝ*
14 1re 7987 . . . . . . 7 1 ∈ ℝ
1514rexri 8046 . . . . . 6 1 ∈ ℝ*
16 elioo2 9953 . . . . . 6 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / (1 + (exp‘𝑥))) ∈ (0(,)1) ↔ ((1 / (1 + (exp‘𝑥))) ∈ ℝ ∧ 0 < (1 / (1 + (exp‘𝑥))) ∧ (1 / (1 + (exp‘𝑥))) < 1)))
1713, 15, 16mp2an 426 . . . . 5 ((1 / (1 + (exp‘𝑥))) ∈ (0(,)1) ↔ ((1 / (1 + (exp‘𝑥))) ∈ ℝ ∧ 0 < (1 / (1 + (exp‘𝑥))) ∧ (1 / (1 + (exp‘𝑥))) < 1))
187, 8, 12, 17syl3anbrc 1183 . . . 4 (𝑥 ∈ ℝ → (1 / (1 + (exp‘𝑥))) ∈ (0(,)1))
1918adantl 277 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ) → (1 / (1 + (exp‘𝑥))) ∈ (0(,)1))
20 elioore 9944 . . . . . . . . . 10 (𝑦 ∈ (0(,)1) → 𝑦 ∈ ℝ)
21 eliooord 9960 . . . . . . . . . . 11 (𝑦 ∈ (0(,)1) → (0 < 𝑦𝑦 < 1))
2221simpld 112 . . . . . . . . . 10 (𝑦 ∈ (0(,)1) → 0 < 𝑦)
2320, 22elrpd 9725 . . . . . . . . 9 (𝑦 ∈ (0(,)1) → 𝑦 ∈ ℝ+)
2423rpreccld 9739 . . . . . . . 8 (𝑦 ∈ (0(,)1) → (1 / 𝑦) ∈ ℝ+)
2524rpred 9728 . . . . . . 7 (𝑦 ∈ (0(,)1) → (1 / 𝑦) ∈ ℝ)
26 1red 8003 . . . . . . 7 (𝑦 ∈ (0(,)1) → 1 ∈ ℝ)
2725, 26resubcld 8369 . . . . . 6 (𝑦 ∈ (0(,)1) → ((1 / 𝑦) − 1) ∈ ℝ)
2821simprd 114 . . . . . . . 8 (𝑦 ∈ (0(,)1) → 𝑦 < 1)
2923reclt1d 9742 . . . . . . . 8 (𝑦 ∈ (0(,)1) → (𝑦 < 1 ↔ 1 < (1 / 𝑦)))
3028, 29mpbid 147 . . . . . . 7 (𝑦 ∈ (0(,)1) → 1 < (1 / 𝑦))
3126, 25posdifd 8520 . . . . . . 7 (𝑦 ∈ (0(,)1) → (1 < (1 / 𝑦) ↔ 0 < ((1 / 𝑦) − 1)))
3230, 31mpbid 147 . . . . . 6 (𝑦 ∈ (0(,)1) → 0 < ((1 / 𝑦) − 1))
3327, 32elrpd 9725 . . . . 5 (𝑦 ∈ (0(,)1) → ((1 / 𝑦) − 1) ∈ ℝ+)
3433relogcld 14780 . . . 4 (𝑦 ∈ (0(,)1) → (log‘((1 / 𝑦) − 1)) ∈ ℝ)
3534adantl 277 . . 3 ((⊤ ∧ 𝑦 ∈ (0(,)1)) → (log‘((1 / 𝑦) − 1)) ∈ ℝ)
36 1cnd 8004 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → 1 ∈ ℂ)
374adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (exp‘𝑥) ∈ ℝ+)
3837rpcnd 9730 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (exp‘𝑥) ∈ ℂ)
3936, 38addcld 8008 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (1 + (exp‘𝑥)) ∈ ℂ)
4023adantl 277 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
4140rpcnd 9730 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → 𝑦 ∈ ℂ)
4240rpap0d 9734 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → 𝑦 # 0)
4336, 39, 41, 42divmulap2d 8812 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((1 / 𝑦) = (1 + (exp‘𝑥)) ↔ 1 = (𝑦 · (1 + (exp‘𝑥)))))
4424adantl 277 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (1 / 𝑦) ∈ ℝ+)
4544rpcnd 9730 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (1 / 𝑦) ∈ ℂ)
4636, 38, 45addrsub 8359 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((1 + (exp‘𝑥)) = (1 / 𝑦) ↔ (exp‘𝑥) = ((1 / 𝑦) − 1)))
4733adantl 277 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((1 / 𝑦) − 1) ∈ ℝ+)
4847reeflogd 14781 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (exp‘(log‘((1 / 𝑦) − 1))) = ((1 / 𝑦) − 1))
4948eqeq2d 2201 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((exp‘𝑥) = (exp‘(log‘((1 / 𝑦) − 1))) ↔ (exp‘𝑥) = ((1 / 𝑦) − 1)))
50 reef11 11742 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (log‘((1 / 𝑦) − 1)) ∈ ℝ) → ((exp‘𝑥) = (exp‘(log‘((1 / 𝑦) − 1))) ↔ 𝑥 = (log‘((1 / 𝑦) − 1))))
5134, 50sylan2 286 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((exp‘𝑥) = (exp‘(log‘((1 / 𝑦) − 1))) ↔ 𝑥 = (log‘((1 / 𝑦) − 1))))
5246, 49, 513bitr2rd 217 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (𝑥 = (log‘((1 / 𝑦) − 1)) ↔ (1 + (exp‘𝑥)) = (1 / 𝑦)))
53 eqcom 2191 . . . . . . 7 ((1 + (exp‘𝑥)) = (1 / 𝑦) ↔ (1 / 𝑦) = (1 + (exp‘𝑥)))
5452, 53bitrdi 196 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (𝑥 = (log‘((1 / 𝑦) − 1)) ↔ (1 / 𝑦) = (1 + (exp‘𝑥))))
555adantr 276 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (1 + (exp‘𝑥)) ∈ ℝ+)
5655rpap0d 9734 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (1 + (exp‘𝑥)) # 0)
5736, 41, 39, 56divmulap3d 8813 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → ((1 / (1 + (exp‘𝑥))) = 𝑦 ↔ 1 = (𝑦 · (1 + (exp‘𝑥)))))
5843, 54, 573bitr4d 220 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (𝑥 = (log‘((1 / 𝑦) − 1)) ↔ (1 / (1 + (exp‘𝑥))) = 𝑦))
59 eqcom 2191 . . . . 5 ((1 / (1 + (exp‘𝑥))) = 𝑦𝑦 = (1 / (1 + (exp‘𝑥))))
6058, 59bitrdi 196 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1)) → (𝑥 = (log‘((1 / 𝑦) − 1)) ↔ 𝑦 = (1 / (1 + (exp‘𝑥)))))
6160adantl 277 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ (0(,)1))) → (𝑥 = (log‘((1 / 𝑦) − 1)) ↔ 𝑦 = (1 / (1 + (exp‘𝑥)))))
621, 19, 35, 61f1o2d 6100 . 2 (⊤ → 𝐹:ℝ–1-1-onto→(0(,)1))
6362mptru 1373 1 𝐹:ℝ–1-1-onto→(0(,)1)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wtru 1365  wcel 2160   class class class wbr 4018  cmpt 4079  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5897  cr 7841  0cc0 7842  1c1 7843   + caddc 7845   · cmul 7847  *cxr 8022   < clt 8023  cmin 8159   / cdiv 8660  +crp 9685  (,)cioo 9920  expce 11685  logclog 14754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962  ax-pre-suploc 7963  ax-addf 7964  ax-mulf 7965
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-of 6107  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-map 6677  df-pm 6678  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-xneg 9804  df-xadd 9805  df-ioo 9924  df-ico 9926  df-icc 9927  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-fac 10741  df-bc 10763  df-ihash 10791  df-shft 10859  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397  df-ef 11691  df-e 11692  df-rest 12749  df-topgen 12768  df-psmet 13873  df-xmet 13874  df-met 13875  df-bl 13876  df-mopn 13877  df-top 13975  df-topon 13988  df-bases 14020  df-ntr 14073  df-cn 14165  df-cnp 14166  df-tx 14230  df-cncf 14535  df-limced 14602  df-dvap 14603  df-relog 14756
This theorem is referenced by:  iooreen  15262
  Copyright terms: Public domain W3C validator