![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mul0inf | GIF version |
Description: Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11064 and mulap0bd 8610 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.) |
Ref | Expression |
---|---|
mul0inf | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcl 7935 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
2 | 0cnd 7947 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ∈ ℂ) | |
3 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
4 | 3 | abscld 11183 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℝ) |
5 | simpr 110 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
6 | 5 | abscld 11183 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℝ) |
7 | mincl 11232 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℝ) | |
8 | 4, 6, 7 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℝ) |
9 | 8 | recnd 7982 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℂ) |
10 | 3 | absge0d 11186 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐴)) |
11 | 5 | absge0d 11186 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐵)) |
12 | 0red 7955 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ∈ ℝ) | |
13 | lemininf 11235 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → (0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 ≤ (abs‘𝐴) ∧ 0 ≤ (abs‘𝐵)))) | |
14 | 12, 4, 6, 13 | syl3anc 1238 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 ≤ (abs‘𝐴) ∧ 0 ≤ (abs‘𝐵)))) |
15 | 10, 11, 14 | mpbir2and 944 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < )) |
16 | ap0gt0 8593 | . . . 4 ⊢ ((inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℝ ∧ 0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < )) → (inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) # 0 ↔ 0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ))) | |
17 | 8, 15, 16 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) # 0 ↔ 0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ))) |
18 | absgt0ap 11101 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ 0 < (abs‘𝐴))) | |
19 | absgt0ap 11101 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 # 0 ↔ 0 < (abs‘𝐵))) | |
20 | 18, 19 | bi2anan9 606 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (0 < (abs‘𝐴) ∧ 0 < (abs‘𝐵)))) |
21 | ltmininf 11236 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → (0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 < (abs‘𝐴) ∧ 0 < (abs‘𝐵)))) | |
22 | 12, 4, 6, 21 | syl3anc 1238 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 < (abs‘𝐴) ∧ 0 < (abs‘𝐵)))) |
23 | 20, 22 | bitr4d 191 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ 0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ))) |
24 | mulap0b 8608 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) | |
25 | 17, 23, 24 | 3bitr2rd 217 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) # 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) # 0)) |
26 | 1, 2, 9, 2, 25 | apcon4bid 8577 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {cpr 3593 class class class wbr 4002 ‘cfv 5215 (class class class)co 5872 infcinf 6979 ℂcc 7806 ℝcr 7807 0cc0 7808 · cmul 7813 < clt 7988 ≤ cle 7989 # cap 8534 abscabs 10999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-iinf 4586 ax-cnex 7899 ax-resscn 7900 ax-1cn 7901 ax-1re 7902 ax-icn 7903 ax-addcl 7904 ax-addrcl 7905 ax-mulcl 7906 ax-mulrcl 7907 ax-addcom 7908 ax-mulcom 7909 ax-addass 7910 ax-mulass 7911 ax-distr 7912 ax-i2m1 7913 ax-0lt1 7914 ax-1rid 7915 ax-0id 7916 ax-rnegex 7917 ax-precex 7918 ax-cnre 7919 ax-pre-ltirr 7920 ax-pre-ltwlin 7921 ax-pre-lttrn 7922 ax-pre-apti 7923 ax-pre-ltadd 7924 ax-pre-mulgt0 7925 ax-pre-mulext 7926 ax-arch 7927 ax-caucvg 7928 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-tr 4101 df-id 4292 df-po 4295 df-iso 4296 df-iord 4365 df-on 4367 df-ilim 4368 df-suc 4370 df-iom 4589 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-f1 5220 df-fo 5221 df-f1o 5222 df-fv 5223 df-isom 5224 df-riota 5828 df-ov 5875 df-oprab 5876 df-mpo 5877 df-1st 6138 df-2nd 6139 df-recs 6303 df-frec 6389 df-sup 6980 df-inf 6981 df-pnf 7990 df-mnf 7991 df-xr 7992 df-ltxr 7993 df-le 7994 df-sub 8126 df-neg 8127 df-reap 8528 df-ap 8535 df-div 8626 df-inn 8916 df-2 8974 df-3 8975 df-4 8976 df-n0 9173 df-z 9250 df-uz 9525 df-rp 9650 df-seqfrec 10441 df-exp 10515 df-cj 10844 df-re 10845 df-im 10846 df-rsqrt 11000 df-abs 11001 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |