| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul0inf | GIF version | ||
| Description: Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11227 and mulap0bd 8684 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| mul0inf | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl 8006 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
| 2 | 0cnd 8019 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ∈ ℂ) | |
| 3 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 4 | 3 | abscld 11346 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐴) ∈ ℝ) |
| 5 | simpr 110 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 6 | 5 | abscld 11346 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘𝐵) ∈ ℝ) |
| 7 | mincl 11396 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℝ) | |
| 8 | 4, 6, 7 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℝ) |
| 9 | 8 | recnd 8055 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℂ) |
| 10 | 3 | absge0d 11349 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐴)) |
| 11 | 5 | absge0d 11349 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (abs‘𝐵)) |
| 12 | 0red 8027 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ∈ ℝ) | |
| 13 | lemininf 11399 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → (0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 ≤ (abs‘𝐴) ∧ 0 ≤ (abs‘𝐵)))) | |
| 14 | 12, 4, 6, 13 | syl3anc 1249 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 ≤ (abs‘𝐴) ∧ 0 ≤ (abs‘𝐵)))) |
| 15 | 10, 11, 14 | mpbir2and 946 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < )) |
| 16 | ap0gt0 8667 | . . . 4 ⊢ ((inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ∈ ℝ ∧ 0 ≤ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < )) → (inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) # 0 ↔ 0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ))) | |
| 17 | 8, 15, 16 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) # 0 ↔ 0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ))) |
| 18 | absgt0ap 11264 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ 0 < (abs‘𝐴))) | |
| 19 | absgt0ap 11264 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 # 0 ↔ 0 < (abs‘𝐵))) | |
| 20 | 18, 19 | bi2anan9 606 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (0 < (abs‘𝐴) ∧ 0 < (abs‘𝐵)))) |
| 21 | ltmininf 11400 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → (0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 < (abs‘𝐴) ∧ 0 < (abs‘𝐵)))) | |
| 22 | 12, 4, 6, 21 | syl3anc 1249 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) ↔ (0 < (abs‘𝐴) ∧ 0 < (abs‘𝐵)))) |
| 23 | 20, 22 | bitr4d 191 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ 0 < inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ))) |
| 24 | mulap0b 8682 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) | |
| 25 | 17, 23, 24 | 3bitr2rd 217 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) # 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) # 0)) |
| 26 | 1, 2, 9, 2, 25 | apcon4bid 8651 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cpr 3623 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 infcinf 7049 ℂcc 7877 ℝcr 7878 0cc0 7879 · cmul 7884 < clt 8061 ≤ cle 8062 # cap 8608 abscabs 11162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |