Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr2rd | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | |
3bitr2d.2 | |
3bitr2d.3 |
Ref | Expression |
---|---|
3bitr2rd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 | |
2 | 3bitr2d.2 | . . 3 | |
3 | 1, 2 | bitr4d 190 | . 2 |
4 | 3bitr2d.3 | . 2 | |
5 | 3, 4 | bitr2d 188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: fndmdif 5590 addsubeq4 8113 muleqadd 8565 nn0lt10b 9271 adddivflid 10227 frec2uzltd 10338 mul0inf 11182 summodnegmod 11762 lgsdilem 13568 lgsne0 13579 iooref1o 13913 |
Copyright terms: Public domain | W3C validator |