ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muleqadd GIF version

Theorem muleqadd 8290
Description: Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
Assertion
Ref Expression
muleqadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1))

Proof of Theorem muleqadd
StepHypRef Expression
1 ax-1cn 7588 . . . . 5 1 ∈ ℂ
2 mulsub 8030 . . . . . 6 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
31, 2mpanr2 432 . . . . 5 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
41, 3mpanl2 429 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
51mulid1i 7640 . . . . . . 7 (1 · 1) = 1
65oveq2i 5717 . . . . . 6 ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1)
76a1i 9 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1))
8 mulid1 7635 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
9 mulid1 7635 . . . . . 6 (𝐵 ∈ ℂ → (𝐵 · 1) = 𝐵)
108, 9oveqan12d 5725 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 1) + (𝐵 · 1)) = (𝐴 + 𝐵))
117, 10oveq12d 5724 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) = (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)))
12 mulcl 7619 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
13 addcl 7617 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
14 addsub 7844 . . . . . 6 (((𝐴 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
151, 14mp3an2 1271 . . . . 5 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
1612, 13, 15syl2anc 406 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
174, 11, 163eqtrd 2136 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
1817eqeq1d 2108 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 − 1) · (𝐵 − 1)) = 1 ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1))
191addid2i 7776 . . . 4 (0 + 1) = 1
2019eqeq2i 2110 . . 3 ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1)
2112, 13subcld 7944 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ)
22 0cn 7630 . . . . 5 0 ∈ ℂ
23 addcan2 7814 . . . . 5 ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ) → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
2422, 1, 23mp3an23 1275 . . . 4 (((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
2521, 24syl 14 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
2620, 25syl5rbbr 194 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0 ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1))
2712, 13subeq0ad 7954 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 + 𝐵)))
2818, 26, 273bitr2rd 216 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  (class class class)co 5706  cc 7498  0cc0 7500  1c1 7501   + caddc 7503   · cmul 7505  cmin 7804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-setind 4390  ax-resscn 7587  ax-1cn 7588  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-sub 7806  df-neg 7807
This theorem is referenced by:  conjmulap  8350
  Copyright terms: Public domain W3C validator