ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muleqadd GIF version

Theorem muleqadd 8586
Description: Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
Assertion
Ref Expression
muleqadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1))

Proof of Theorem muleqadd
StepHypRef Expression
1 ax-1cn 7867 . . . . 5 1 ∈ ℂ
2 mulsub 8320 . . . . . 6 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
31, 2mpanr2 436 . . . . 5 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
41, 3mpanl2 433 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
51mulid1i 7922 . . . . . . 7 (1 · 1) = 1
65oveq2i 5864 . . . . . 6 ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1)
76a1i 9 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1))
8 mulid1 7917 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
9 mulid1 7917 . . . . . 6 (𝐵 ∈ ℂ → (𝐵 · 1) = 𝐵)
108, 9oveqan12d 5872 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 1) + (𝐵 · 1)) = (𝐴 + 𝐵))
117, 10oveq12d 5871 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) = (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)))
12 mulcl 7901 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
13 addcl 7899 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
14 addsub 8130 . . . . . 6 (((𝐴 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
151, 14mp3an2 1320 . . . . 5 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
1612, 13, 15syl2anc 409 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
174, 11, 163eqtrd 2207 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
1817eqeq1d 2179 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 − 1) · (𝐵 − 1)) = 1 ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1))
1912, 13subcld 8230 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ)
20 0cn 7912 . . . . 5 0 ∈ ℂ
21 addcan2 8100 . . . . 5 ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ) → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
2220, 1, 21mp3an23 1324 . . . 4 (((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
2319, 22syl 14 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
241addid2i 8062 . . . 4 (0 + 1) = 1
2524eqeq2i 2181 . . 3 ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1)
2623, 25bitr3di 194 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0 ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1))
2712, 13subeq0ad 8240 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 + 𝐵)))
2818, 26, 273bitr2rd 216 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779  cmin 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092  df-neg 8093
This theorem is referenced by:  conjmulap  8646
  Copyright terms: Public domain W3C validator