| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddivflid | GIF version | ||
| Description: The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| adddivflid | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ) | |
| 2 | nn0z 9391 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
| 3 | znq 9744 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℚ) | |
| 4 | 2, 3 | sylan 283 | . . . . 5 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℚ) |
| 5 | 4 | 3adant1 1017 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℚ) |
| 6 | 1, 5 | jca 306 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℚ)) |
| 7 | flqbi2 10432 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℚ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1))) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1))) |
| 9 | nn0re 9303 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ) | |
| 10 | nn0ge0 9319 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 0 ≤ 𝐵) | |
| 11 | 9, 10 | jca 306 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) |
| 12 | nnre 9042 | . . . . . . 7 ⊢ (𝐶 ∈ ℕ → 𝐶 ∈ ℝ) | |
| 13 | nngt0 9060 | . . . . . . 7 ⊢ (𝐶 ∈ ℕ → 0 < 𝐶) | |
| 14 | 12, 13 | jca 306 | . . . . . 6 ⊢ (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
| 15 | 11, 14 | anim12i 338 | . . . . 5 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶))) |
| 16 | 15 | 3adant1 1017 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶))) |
| 17 | divge0 8945 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 0 ≤ (𝐵 / 𝐶)) | |
| 18 | 16, 17 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐵 / 𝐶)) |
| 19 | 18 | biantrurd 305 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1))) |
| 20 | nnrp 9784 | . . . . 5 ⊢ (𝐶 ∈ ℕ → 𝐶 ∈ ℝ+) | |
| 21 | 9, 20 | anim12i 338 | . . . 4 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+)) |
| 22 | 21 | 3adant1 1017 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+)) |
| 23 | divlt1lt 9845 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶)) | |
| 24 | 22, 23 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶)) |
| 25 | 8, 19, 24 | 3bitr2rd 217 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 ℝcr 7923 0cc0 7924 1c1 7925 + caddc 7927 < clt 8106 ≤ cle 8107 / cdiv 8744 ℕcn 9035 ℕ0cn0 9294 ℤcz 9371 ℚcq 9739 ℝ+crp 9774 ⌊cfl 10409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-n0 9295 df-z 9372 df-q 9740 df-rp 9775 df-fl 10411 |
| This theorem is referenced by: 2lgslem3a 15512 2lgslem3b 15513 2lgslem3c 15514 2lgslem3d 15515 |
| Copyright terms: Public domain | W3C validator |