![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adddivflid | GIF version |
Description: The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.) |
Ref | Expression |
---|---|
adddivflid | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ) | |
2 | nn0z 9275 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
3 | znq 9626 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℚ) | |
4 | 2, 3 | sylan 283 | . . . . 5 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℚ) |
5 | 4 | 3adant1 1015 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℚ) |
6 | 1, 5 | jca 306 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℚ)) |
7 | flqbi2 10293 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℚ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1))) | |
8 | 6, 7 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1))) |
9 | nn0re 9187 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ) | |
10 | nn0ge0 9203 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 0 ≤ 𝐵) | |
11 | 9, 10 | jca 306 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) |
12 | nnre 8928 | . . . . . . 7 ⊢ (𝐶 ∈ ℕ → 𝐶 ∈ ℝ) | |
13 | nngt0 8946 | . . . . . . 7 ⊢ (𝐶 ∈ ℕ → 0 < 𝐶) | |
14 | 12, 13 | jca 306 | . . . . . 6 ⊢ (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
15 | 11, 14 | anim12i 338 | . . . . 5 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶))) |
16 | 15 | 3adant1 1015 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶))) |
17 | divge0 8832 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 0 ≤ (𝐵 / 𝐶)) | |
18 | 16, 17 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐵 / 𝐶)) |
19 | 18 | biantrurd 305 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1))) |
20 | nnrp 9665 | . . . . 5 ⊢ (𝐶 ∈ ℕ → 𝐶 ∈ ℝ+) | |
21 | 9, 20 | anim12i 338 | . . . 4 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+)) |
22 | 21 | 3adant1 1015 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+)) |
23 | divlt1lt 9726 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶)) | |
24 | 22, 23 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶)) |
25 | 8, 19, 24 | 3bitr2rd 217 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 (class class class)co 5877 ℝcr 7812 0cc0 7813 1c1 7814 + caddc 7816 < clt 7994 ≤ cle 7995 / cdiv 8631 ℕcn 8921 ℕ0cn0 9178 ℤcz 9255 ℚcq 9621 ℝ+crp 9655 ⌊cfl 10270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-n0 9179 df-z 9256 df-q 9622 df-rp 9656 df-fl 10272 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |