ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddivflid GIF version

Theorem adddivflid 10507
Description: The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
adddivflid ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴))

Proof of Theorem adddivflid
StepHypRef Expression
1 simp1 1021 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
2 nn0z 9462 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
3 znq 9815 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℚ)
42, 3sylan 283 . . . . 5 ((𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℚ)
543adant1 1039 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℚ)
61, 5jca 306 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℚ))
7 flqbi2 10506 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 / 𝐶) ∈ ℚ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1)))
86, 7syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1)))
9 nn0re 9374 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
10 nn0ge0 9390 . . . . . . 7 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
119, 10jca 306 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
12 nnre 9113 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
13 nngt0 9131 . . . . . . 7 (𝐶 ∈ ℕ → 0 < 𝐶)
1412, 13jca 306 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
1511, 14anim12i 338 . . . . 5 ((𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)))
16153adant1 1039 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)))
17 divge0 9016 . . . 4 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 0 ≤ (𝐵 / 𝐶))
1816, 17syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → 0 ≤ (𝐵 / 𝐶))
1918biantrurd 305 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ (0 ≤ (𝐵 / 𝐶) ∧ (𝐵 / 𝐶) < 1)))
20 nnrp 9855 . . . . 5 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ+)
219, 20anim12i 338 . . . 4 ((𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+))
22213adant1 1039 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+))
23 divlt1lt 9916 . . 3 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶))
2422, 23syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → ((𝐵 / 𝐶) < 1 ↔ 𝐵 < 𝐶))
258, 19, 243bitr2rd 217 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5317  (class class class)co 6000  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   < clt 8177  cle 8178   / cdiv 8815  cn 9106  0cn0 9365  cz 9442  cq 9810  +crp 9845  cfl 10483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-q 9811  df-rp 9846  df-fl 10485
This theorem is referenced by:  2lgslem3a  15766  2lgslem3b  15767  2lgslem3c  15768  2lgslem3d  15769
  Copyright terms: Public domain W3C validator