| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsmulc | GIF version | ||
| Description: Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsmulc | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1020 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 2 | zmulcl 9500 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 · 𝐾) ∈ ℤ) | |
| 3 | 2 | 3adant2 1040 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 · 𝐾) ∈ ℤ) |
| 4 | zmulcl 9500 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐾) ∈ ℤ) | |
| 5 | 4 | 3adant1 1039 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐾) ∈ ℤ) |
| 6 | 3, 5 | jca 306 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 · 𝐾) ∈ ℤ ∧ (𝑁 · 𝐾) ∈ ℤ)) |
| 7 | 6 | 3comr 1235 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 · 𝐾) ∈ ℤ ∧ (𝑁 · 𝐾) ∈ ℤ)) |
| 8 | simpr 110 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | |
| 9 | zcn 9451 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 10 | zcn 9451 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 11 | zcn 9451 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 12 | mulass 8130 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾))) | |
| 13 | 9, 10, 11, 12 | syl3an 1313 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾))) |
| 14 | 13 | 3com13 1232 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾))) |
| 15 | 14 | 3expa 1227 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾))) |
| 16 | 15 | 3adantl3 1179 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾))) |
| 17 | oveq1 6008 | . . . . 5 ⊢ ((𝑥 · 𝑀) = 𝑁 → ((𝑥 · 𝑀) · 𝐾) = (𝑁 · 𝐾)) | |
| 18 | 16, 17 | sylan9req 2283 | . . . 4 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑥 · 𝑀) = 𝑁) → (𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾)) |
| 19 | 18 | ex 115 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾))) |
| 20 | 1, 7, 8, 19 | dvds1lem 12313 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾))) |
| 21 | 20 | 3coml 1234 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6001 ℂcc 7997 · cmul 8004 ℤcz 9446 ∥ cdvds 12298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-dvds 12299 |
| This theorem is referenced by: dvdsmulcr 12332 coprmdvds2 12615 mulgcddvds 12616 rpmulgcd2 12617 pcpremul 12816 znrrg 14624 mpodvdsmulf1o 15664 |
| Copyright terms: Public domain | W3C validator |