ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmulc GIF version

Theorem dvdsmulc 11965
Description: Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulc ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾)))

Proof of Theorem dvdsmulc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3simpc 998 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 zmulcl 9373 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 · 𝐾) ∈ ℤ)
323adant2 1018 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 · 𝐾) ∈ ℤ)
4 zmulcl 9373 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐾) ∈ ℤ)
543adant1 1017 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐾) ∈ ℤ)
63, 5jca 306 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 · 𝐾) ∈ ℤ ∧ (𝑁 · 𝐾) ∈ ℤ))
763comr 1213 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 · 𝐾) ∈ ℤ ∧ (𝑁 · 𝐾) ∈ ℤ))
8 simpr 110 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
9 zcn 9325 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
10 zcn 9325 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
11 zcn 9325 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
12 mulass 8005 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
139, 10, 11, 12syl3an 1291 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
14133com13 1210 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
15143expa 1205 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
16153adantl3 1157 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
17 oveq1 5926 . . . . 5 ((𝑥 · 𝑀) = 𝑁 → ((𝑥 · 𝑀) · 𝐾) = (𝑁 · 𝐾))
1816, 17sylan9req 2247 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑥 · 𝑀) = 𝑁) → (𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾))
1918ex 115 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾)))
201, 7, 8, 19dvds1lem 11948 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾)))
21203coml 1212 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4030  (class class class)co 5919  cc 7872   · cmul 7879  cz 9320  cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-dvds 11934
This theorem is referenced by:  dvdsmulcr  11967  coprmdvds2  12234  mulgcddvds  12235  rpmulgcd2  12236  pcpremul  12434  znrrg  14159
  Copyright terms: Public domain W3C validator