ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3com13 Unicode version

Theorem 3com13 1211
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3com13  |-  ( ( ch  /\  ps  /\  ph )  ->  th )

Proof of Theorem 3com13
StepHypRef Expression
1 3anrev 991 . 2  |-  ( ( ch  /\  ps  /\  ph )  <->  ( ph  /\  ps  /\  ch ) )
2 3exp.1 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
31, 2sylbi 121 1  |-  ( ( ch  /\  ps  /\  ph )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3coml  1213  3adant3l  1237  3adant3r  1238  syld3an1  1296  oaword1  6580  nnacan  6621  elmapg  6771  subadd  8310  xrltso  9953  iooshf  10109  dvdsmulc  12245  lcmdvdsb  12521  infpnlem1  12797
  Copyright terms: Public domain W3C validator