ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3com13 Unicode version

Theorem 3com13 1210
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3com13  |-  ( ( ch  /\  ps  /\  ph )  ->  th )

Proof of Theorem 3com13
StepHypRef Expression
1 3anrev 990 . 2  |-  ( ( ch  /\  ps  /\  ph )  <->  ( ph  /\  ps  /\  ch ) )
2 3exp.1 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
31, 2sylbi 121 1  |-  ( ( ch  /\  ps  /\  ph )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3coml  1212  3adant3l  1236  3adant3r  1237  syld3an1  1295  oaword1  6524  nnacan  6565  elmapg  6715  subadd  8222  xrltso  9862  iooshf  10018  dvdsmulc  11962  lcmdvdsb  12222  infpnlem1  12497
  Copyright terms: Public domain W3C validator