ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3com13 Unicode version

Theorem 3com13 1198
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3com13  |-  ( ( ch  /\  ps  /\  ph )  ->  th )

Proof of Theorem 3com13
StepHypRef Expression
1 3anrev 978 . 2  |-  ( ( ch  /\  ps  /\  ph )  <->  ( ph  /\  ps  /\  ch ) )
2 3exp.1 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
31, 2sylbi 120 1  |-  ( ( ch  /\  ps  /\  ph )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  3coml  1200  3adant3l  1224  3adant3r  1225  syld3an1  1274  oaword1  6439  nnacan  6480  elmapg  6627  subadd  8101  xrltso  9732  iooshf  9888  dvdsmulc  11759  lcmdvdsb  12016  infpnlem1  12289
  Copyright terms: Public domain W3C validator