ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooshf GIF version

Theorem iooshf 9952
Description: Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
iooshf (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵))))

Proof of Theorem iooshf
StepHypRef Expression
1 ltaddsub 8393 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 + 𝐵) < 𝐴𝐶 < (𝐴𝐵)))
213com13 1208 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐵) < 𝐴𝐶 < (𝐴𝐵)))
323expa 1203 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐵) < 𝐴𝐶 < (𝐴𝐵)))
43adantrr 479 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐶 + 𝐵) < 𝐴𝐶 < (𝐴𝐵)))
5 ltsubadd 8389 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝐴𝐵) < 𝐷𝐴 < (𝐷 + 𝐵)))
65bicomd 141 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐴 < (𝐷 + 𝐵) ↔ (𝐴𝐵) < 𝐷))
763expa 1203 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ ℝ) → (𝐴 < (𝐷 + 𝐵) ↔ (𝐴𝐵) < 𝐷))
87adantrl 478 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 < (𝐷 + 𝐵) ↔ (𝐴𝐵) < 𝐷))
94, 8anbi12d 473 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐶 + 𝐵) < 𝐴𝐴 < (𝐷 + 𝐵)) ↔ (𝐶 < (𝐴𝐵) ∧ (𝐴𝐵) < 𝐷)))
10 readdcl 7937 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
1110rexrd 8007 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ*)
1211ad2ant2rl 511 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 + 𝐵) ∈ ℝ*)
13 readdcl 7937 . . . . . 6 ((𝐷 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐷 + 𝐵) ∈ ℝ)
1413rexrd 8007 . . . . 5 ((𝐷 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐷 + 𝐵) ∈ ℝ*)
1514ad2ant2l 508 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐷 + 𝐵) ∈ ℝ*)
16 rexr 8003 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
1716ad2antrl 490 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐴 ∈ ℝ*)
18 elioo5 9933 . . . 4 (((𝐶 + 𝐵) ∈ ℝ* ∧ (𝐷 + 𝐵) ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)) ↔ ((𝐶 + 𝐵) < 𝐴𝐴 < (𝐷 + 𝐵))))
1912, 15, 17, 18syl3anc 1238 . . 3 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)) ↔ ((𝐶 + 𝐵) < 𝐴𝐴 < (𝐷 + 𝐵))))
2019ancoms 268 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)) ↔ ((𝐶 + 𝐵) < 𝐴𝐴 < (𝐷 + 𝐵))))
21 rexr 8003 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
2221ad2antrl 490 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ*)
23 rexr 8003 . . . 4 (𝐷 ∈ ℝ → 𝐷 ∈ ℝ*)
2423ad2antll 491 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ*)
25 resubcl 8221 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
2625rexrd 8007 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ*)
2726adantr 276 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴𝐵) ∈ ℝ*)
28 elioo5 9933 . . 3 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ* ∧ (𝐴𝐵) ∈ ℝ*) → ((𝐴𝐵) ∈ (𝐶(,)𝐷) ↔ (𝐶 < (𝐴𝐵) ∧ (𝐴𝐵) < 𝐷)))
2922, 24, 27, 28syl3anc 1238 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵) ∈ (𝐶(,)𝐷) ↔ (𝐶 < (𝐴𝐵) ∧ (𝐴𝐵) < 𝐷)))
309, 20, 293bitr4rd 221 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wcel 2148   class class class wbr 4004  (class class class)co 5875  cr 7810   + caddc 7814  *cxr 7991   < clt 7992  cmin 8128  (,)cioo 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-sub 8130  df-neg 8131  df-ioo 9892
This theorem is referenced by:  sinq34lt0t  14255
  Copyright terms: Public domain W3C validator