| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3coml | GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1212 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com13 1211 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3comr 1214 nndir 6586 f1oen2g 6856 f1dom2g 6857 ordiso 7150 addassnqg 7508 ltbtwnnqq 7541 nnanq0 7584 ltasrg 7896 recexgt0sr 7899 axmulass 7999 adddir 8076 axltadd 8155 ltleletr 8167 letr 8168 pnpcan2 8325 subdir 8471 div13ap 8779 zdiv 9474 xrletr 9943 fzen 10178 fzrevral2 10241 fzshftral 10243 fzind2 10381 mulbinom2 10814 elicc4abs 11455 dvdsnegb 12169 muldvds1 12177 muldvds2 12178 dvdscmul 12179 dvdsmulc 12180 dvdsgcd 12383 mulgcdr 12389 lcmgcdeq 12455 congr 12472 mulgnnass 13543 mettri 14895 cnmet 15052 addcncntoplem 15083 |
| Copyright terms: Public domain | W3C validator |