![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3coml | GIF version |
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com23 1211 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com13 1210 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3comr 1213 nndir 6545 f1oen2g 6811 f1dom2g 6812 ordiso 7097 addassnqg 7444 ltbtwnnqq 7477 nnanq0 7520 ltasrg 7832 recexgt0sr 7835 axmulass 7935 adddir 8012 axltadd 8091 ltleletr 8103 letr 8104 pnpcan2 8261 subdir 8407 div13ap 8714 zdiv 9408 xrletr 9877 fzen 10112 fzrevral2 10175 fzshftral 10177 fzind2 10309 mulbinom2 10730 elicc4abs 11241 dvdsnegb 11954 muldvds1 11962 muldvds2 11963 dvdscmul 11964 dvdsmulc 11965 dvdsgcd 12152 mulgcdr 12158 lcmgcdeq 12224 congr 12241 mulgnnass 13230 mettri 14552 cnmet 14709 addcncntoplem 14740 |
Copyright terms: Public domain | W3C validator |