| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3coml | GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1233 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com13 1232 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3comr 1235 nndir 6644 f1oen2g 6914 f1dom2g 6915 ordiso 7211 addassnqg 7577 ltbtwnnqq 7610 nnanq0 7653 ltasrg 7965 recexgt0sr 7968 axmulass 8068 adddir 8145 axltadd 8224 ltleletr 8236 letr 8237 pnpcan2 8394 subdir 8540 div13ap 8848 zdiv 9543 xrletr 10012 fzen 10247 fzrevral2 10310 fzshftral 10312 fzind2 10453 mulbinom2 10886 ccatlcan 11258 elicc4abs 11613 dvdsnegb 12327 muldvds1 12335 muldvds2 12336 dvdscmul 12337 dvdsmulc 12338 dvdsgcd 12541 mulgcdr 12547 lcmgcdeq 12613 congr 12630 mulgnnass 13702 mettri 15055 cnmet 15212 addcncntoplem 15243 |
| Copyright terms: Public domain | W3C validator |