Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3coml | GIF version |
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com23 1204 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com13 1203 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: 3comr 1206 nndir 6469 f1oen2g 6733 f1dom2g 6734 ordiso 7013 addassnqg 7344 ltbtwnnqq 7377 nnanq0 7420 ltasrg 7732 recexgt0sr 7735 axmulass 7835 adddir 7911 axltadd 7989 ltleletr 8001 letr 8002 pnpcan2 8159 subdir 8305 div13ap 8610 zdiv 9300 xrletr 9765 fzen 9999 fzrevral2 10062 fzshftral 10064 fzind2 10195 mulbinom2 10592 elicc4abs 11058 dvdsnegb 11770 muldvds1 11778 muldvds2 11779 dvdscmul 11780 dvdsmulc 11781 dvdsgcd 11967 mulgcdr 11973 lcmgcdeq 12037 congr 12054 mettri 13167 cnmet 13324 addcncntoplem 13345 |
Copyright terms: Public domain | W3C validator |