| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3coml | GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) | 
| Ref | Expression | 
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1211 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) | 
| 3 | 2 | 3com13 1210 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 3comr 1213 nndir 6548 f1oen2g 6814 f1dom2g 6815 ordiso 7102 addassnqg 7449 ltbtwnnqq 7482 nnanq0 7525 ltasrg 7837 recexgt0sr 7840 axmulass 7940 adddir 8017 axltadd 8096 ltleletr 8108 letr 8109 pnpcan2 8266 subdir 8412 div13ap 8720 zdiv 9414 xrletr 9883 fzen 10118 fzrevral2 10181 fzshftral 10183 fzind2 10315 mulbinom2 10748 elicc4abs 11259 dvdsnegb 11973 muldvds1 11981 muldvds2 11982 dvdscmul 11983 dvdsmulc 11984 dvdsgcd 12179 mulgcdr 12185 lcmgcdeq 12251 congr 12268 mulgnnass 13287 mettri 14609 cnmet 14766 addcncntoplem 14797 | 
| Copyright terms: Public domain | W3C validator |