ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3coml GIF version

Theorem 3coml 1234
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3coml ((𝜓𝜒𝜑) → 𝜃)

Proof of Theorem 3coml
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213com23 1233 . 2 ((𝜑𝜒𝜓) → 𝜃)
323com13 1232 1 ((𝜓𝜒𝜑) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3comr  1235  nndir  6626  f1oen2g  6896  f1dom2g  6897  ordiso  7191  addassnqg  7557  ltbtwnnqq  7590  nnanq0  7633  ltasrg  7945  recexgt0sr  7948  axmulass  8048  adddir  8125  axltadd  8204  ltleletr  8216  letr  8217  pnpcan2  8374  subdir  8520  div13ap  8828  zdiv  9523  xrletr  9992  fzen  10227  fzrevral2  10290  fzshftral  10292  fzind2  10432  mulbinom2  10865  ccatlcan  11236  elicc4abs  11591  dvdsnegb  12305  muldvds1  12313  muldvds2  12314  dvdscmul  12315  dvdsmulc  12316  dvdsgcd  12519  mulgcdr  12525  lcmgcdeq  12591  congr  12608  mulgnnass  13680  mettri  15032  cnmet  15189  addcncntoplem  15220
  Copyright terms: Public domain W3C validator