ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3coml GIF version

Theorem 3coml 1210
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3coml ((𝜓𝜒𝜑) → 𝜃)

Proof of Theorem 3coml
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213com23 1209 . 2 ((𝜑𝜒𝜓) → 𝜃)
323com13 1208 1 ((𝜓𝜒𝜑) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  3comr  1211  nndir  6490  f1oen2g  6754  f1dom2g  6755  ordiso  7034  addassnqg  7380  ltbtwnnqq  7413  nnanq0  7456  ltasrg  7768  recexgt0sr  7771  axmulass  7871  adddir  7947  axltadd  8026  ltleletr  8038  letr  8039  pnpcan2  8196  subdir  8342  div13ap  8649  zdiv  9340  xrletr  9807  fzen  10042  fzrevral2  10105  fzshftral  10107  fzind2  10238  mulbinom2  10636  elicc4abs  11102  dvdsnegb  11814  muldvds1  11822  muldvds2  11823  dvdscmul  11824  dvdsmulc  11825  dvdsgcd  12012  mulgcdr  12018  lcmgcdeq  12082  congr  12099  mulgnnass  13016  mettri  13843  cnmet  14000  addcncntoplem  14021
  Copyright terms: Public domain W3C validator