| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3coml | GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1233 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com13 1232 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3comr 1235 nndir 6626 f1oen2g 6896 f1dom2g 6897 ordiso 7191 addassnqg 7557 ltbtwnnqq 7590 nnanq0 7633 ltasrg 7945 recexgt0sr 7948 axmulass 8048 adddir 8125 axltadd 8204 ltleletr 8216 letr 8217 pnpcan2 8374 subdir 8520 div13ap 8828 zdiv 9523 xrletr 9992 fzen 10227 fzrevral2 10290 fzshftral 10292 fzind2 10432 mulbinom2 10865 ccatlcan 11236 elicc4abs 11591 dvdsnegb 12305 muldvds1 12313 muldvds2 12314 dvdscmul 12315 dvdsmulc 12316 dvdsgcd 12519 mulgcdr 12525 lcmgcdeq 12591 congr 12608 mulgnnass 13680 mettri 15032 cnmet 15189 addcncntoplem 15220 |
| Copyright terms: Public domain | W3C validator |