ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3coml GIF version

Theorem 3coml 1210
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3coml ((𝜓𝜒𝜑) → 𝜃)

Proof of Theorem 3coml
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213com23 1209 . 2 ((𝜑𝜒𝜓) → 𝜃)
323com13 1208 1 ((𝜓𝜒𝜑) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  3comr  1211  nndir  6481  f1oen2g  6745  f1dom2g  6746  ordiso  7025  addassnqg  7356  ltbtwnnqq  7389  nnanq0  7432  ltasrg  7744  recexgt0sr  7747  axmulass  7847  adddir  7923  axltadd  8001  ltleletr  8013  letr  8014  pnpcan2  8171  subdir  8317  div13ap  8622  zdiv  9312  xrletr  9777  fzen  10011  fzrevral2  10074  fzshftral  10076  fzind2  10207  mulbinom2  10604  elicc4abs  11069  dvdsnegb  11781  muldvds1  11789  muldvds2  11790  dvdscmul  11791  dvdsmulc  11792  dvdsgcd  11978  mulgcdr  11984  lcmgcdeq  12048  congr  12065  mulgnnass  12876  mettri  13424  cnmet  13581  addcncntoplem  13602
  Copyright terms: Public domain W3C validator