Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3coml | GIF version |
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com23 1199 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com13 1198 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3comr 1201 nndir 6458 f1oen2g 6721 f1dom2g 6722 ordiso 7001 addassnqg 7323 ltbtwnnqq 7356 nnanq0 7399 ltasrg 7711 recexgt0sr 7714 axmulass 7814 adddir 7890 axltadd 7968 ltleletr 7980 letr 7981 pnpcan2 8138 subdir 8284 div13ap 8589 zdiv 9279 xrletr 9744 fzen 9978 fzrevral2 10041 fzshftral 10043 fzind2 10174 mulbinom2 10571 elicc4abs 11036 dvdsnegb 11748 muldvds1 11756 muldvds2 11757 dvdscmul 11758 dvdsmulc 11759 dvdsgcd 11945 mulgcdr 11951 lcmgcdeq 12015 congr 12032 mettri 13013 cnmet 13170 addcncntoplem 13191 |
Copyright terms: Public domain | W3C validator |