| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3coml | GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1211 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com13 1210 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3comr 1213 nndir 6557 f1oen2g 6823 f1dom2g 6824 ordiso 7111 addassnqg 7468 ltbtwnnqq 7501 nnanq0 7544 ltasrg 7856 recexgt0sr 7859 axmulass 7959 adddir 8036 axltadd 8115 ltleletr 8127 letr 8128 pnpcan2 8285 subdir 8431 div13ap 8739 zdiv 9433 xrletr 9902 fzen 10137 fzrevral2 10200 fzshftral 10202 fzind2 10334 mulbinom2 10767 elicc4abs 11278 dvdsnegb 11992 muldvds1 12000 muldvds2 12001 dvdscmul 12002 dvdsmulc 12003 dvdsgcd 12206 mulgcdr 12212 lcmgcdeq 12278 congr 12295 mulgnnass 13365 mettri 14717 cnmet 14874 addcncntoplem 14905 |
| Copyright terms: Public domain | W3C validator |