![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnacan | GIF version |
Description: Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnacan | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnaword 6337 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 ⊆ 𝐶 ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶))) | |
2 | 1 | 3comr 1157 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 ⊆ 𝐶 ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶))) |
3 | nnaword 6337 | . . . . 5 ⊢ ((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ⊆ 𝐵 ↔ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) | |
4 | 3 | 3com13 1154 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ⊆ 𝐵 ↔ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) |
5 | 2, 4 | anbi12d 460 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ ((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵)))) |
6 | 5 | bicomd 140 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵)) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵))) |
7 | eqss 3062 | . 2 ⊢ ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) | |
8 | eqss 3062 | . 2 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4g 222 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 ⊆ wss 3021 ωcom 4442 (class class class)co 5706 +o coa 6240 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-id 4153 df-iord 4226 df-on 4228 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-irdg 6197 df-oadd 6247 |
This theorem is referenced by: addcanpig 7043 |
Copyright terms: Public domain | W3C validator |