| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnacan | GIF version | ||
| Description: Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnacan | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaword 6597 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 ⊆ 𝐶 ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶))) | |
| 2 | 1 | 3comr 1214 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 ⊆ 𝐶 ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶))) |
| 3 | nnaword 6597 | . . . . 5 ⊢ ((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ⊆ 𝐵 ↔ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) | |
| 4 | 3 | 3com13 1211 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ⊆ 𝐵 ↔ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) |
| 5 | 2, 4 | anbi12d 473 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ ((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵)))) |
| 6 | 5 | bicomd 141 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵)) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵))) |
| 7 | eqss 3208 | . 2 ⊢ ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) | |
| 8 | eqss 3208 | . 2 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4g 223 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ⊆ wss 3166 ωcom 4638 (class class class)co 5944 +o coa 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-oadd 6506 |
| This theorem is referenced by: addcanpig 7447 |
| Copyright terms: Public domain | W3C validator |