![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnacan | GIF version |
Description: Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnacan | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnaword 6566 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 ⊆ 𝐶 ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶))) | |
2 | 1 | 3comr 1213 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 ⊆ 𝐶 ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶))) |
3 | nnaword 6566 | . . . . 5 ⊢ ((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ⊆ 𝐵 ↔ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) | |
4 | 3 | 3com13 1210 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ⊆ 𝐵 ↔ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) |
5 | 2, 4 | anbi12d 473 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ ((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵)))) |
6 | 5 | bicomd 141 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵)) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵))) |
7 | eqss 3195 | . 2 ⊢ ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) | |
8 | eqss 3195 | . 2 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4g 223 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ⊆ wss 3154 ωcom 4623 (class class class)co 5919 +o coa 6468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-oadd 6475 |
This theorem is referenced by: addcanpig 7396 |
Copyright terms: Public domain | W3C validator |