ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subadd GIF version

Theorem subadd 8160
Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
subadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))

Proof of Theorem subadd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subval 8149 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
21eqeq1d 2186 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
323adant3 1017 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
4 negeu 8148 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)
5 oveq2 5883 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 + 𝑥) = (𝐵 + 𝐶))
65eqeq1d 2186 . . . . . 6 (𝑥 = 𝐶 → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝐶) = 𝐴))
76riota2 5853 . . . . 5 ((𝐶 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
84, 7sylan2 286 . . . 4 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
983impb 1199 . . 3 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
1093com13 1208 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
113, 10bitr4d 191 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  ∃!wreu 2457  crio 5830  (class class class)co 5875  cc 7809   + caddc 7814  cmin 8128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-setind 4537  ax-resscn 7903  ax-1cn 7904  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-sub 8130
This theorem is referenced by:  subadd2  8161  subsub23  8162  pncan  8163  pncan3  8165  addsubeq4  8172  subsub2  8185  renegcl  8218  subaddi  8244  subaddd  8286  fzen  10043  nn0ennn  10433  cos2t  11758  cos2tsin  11759  odd2np1  11878  divalgb  11930  sincosq1eq  14263  coskpi  14272
  Copyright terms: Public domain W3C validator