![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subadd | GIF version |
Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
subadd | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subval 8149 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | |
2 | 1 | eqeq1d 2186 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
3 | 2 | 3adant3 1017 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
4 | negeu 8148 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
5 | oveq2 5883 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝐵 + 𝑥) = (𝐵 + 𝐶)) | |
6 | 5 | eqeq1d 2186 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝐶) = 𝐴)) |
7 | 6 | riota2 5853 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
8 | 4, 7 | sylan2 286 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
9 | 8 | 3impb 1199 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
10 | 9 | 3com13 1208 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
11 | 3, 10 | bitr4d 191 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∃!wreu 2457 ℩crio 5830 (class class class)co 5875 ℂcc 7809 + caddc 7814 − cmin 8128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-setind 4537 ax-resscn 7903 ax-1cn 7904 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-sub 8130 |
This theorem is referenced by: subadd2 8161 subsub23 8162 pncan 8163 pncan3 8165 addsubeq4 8172 subsub2 8185 renegcl 8218 subaddi 8244 subaddd 8286 fzen 10043 nn0ennn 10433 cos2t 11758 cos2tsin 11759 odd2np1 11878 divalgb 11930 sincosq1eq 14263 coskpi 14272 |
Copyright terms: Public domain | W3C validator |